当前位置: X-MOL 学术Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired Materials for In Vivo Bioelectronic Neural Interfaces
Matter ( IF 17.3 ) Pub Date : 2020-10-07 , DOI: 10.1016/j.matt.2020.08.002
Grace A Woods 1, 2 , Nicholas J Rommelfanger 1, 2 , Guosong Hong 2, 3
Affiliation  

The success of in vivo neural interfaces relies on their long-term stability and large scale in interrogating and manipulating neural activity after implantation. Conventional neural probes, owing to their limited spatiotemporal resolution and scale, face challenges for studying the massive, interconnected neural network in its native state. In this review, we argue that taking inspiration from biology will unlock the next generation of in vivo bioelectronic neural interfaces. Reducing the feature sizes of bioelectronic neural interfaces to mimic those of neurons enables high spatial resolution and multiplexity. Additionally, chronic stability at the device-tissue interface is realized by matching the mechanical properties of bioelectronic neural interfaces to those of the endogenous tissue. Furthermore, modeling the design of neural interfaces after the endogenous topology of the neural circuitry enables new insights into the connectivity and dynamics of the brain. Lastly, functionalization of neural probe surfaces with coatings inspired by biology leads to enhanced tissue acceptance over extended timescales. Bioinspired neural interfaces will facilitate future developments in neuroscience studies and neurological treatments by leveraging bidirectional information transfer and integrating neuromorphic computing elements.



中文翻译:

用于体内生物电子神经接口的仿生材料

体内神经接口的成功依赖于其长期稳定性以及植入后大规模询问和操纵神经活动。传统的神经探针由于其时空分辨率和规模有限,在研究其原始状态下的大规模互连神经网络时面临着挑战。在这篇综述中,我们认为从生物学中汲取灵感将解锁下一代体内生物电子神经接口。减小生物电子神经接口的特征尺寸以模仿神经元的特征尺寸可以实现高空间分辨率和多重性。此外,通过将生物电子神经接口的机械特性与内源性组织的机械特性相匹配来实现装置-组织接口的长期稳定性。此外,根据神经回路的内源拓扑对神经接口的设计进行建模可以使人们对大脑的连接性和动力学有新的见解。最后,受生物学启发,用涂层对神经探针表面进行功能化,可以在较长的时间内增强组织的接受度。仿生神经接口将通过利用双向信息传输和集成神经形态计算元件,促进神经科学研究和神经治疗的未来发展。

更新日期:2020-10-07
down
wechat
bug