当前位置: X-MOL 学术J. Mater. Res. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of the in-plane and pin-load bearing behavior of a quasi-isotropic carbon fiber/epoxy matrix multi-scale laminate by modifying the fiber-matrix interphase using graphene nanoplatelets
Journal of Materials Research and Technology ( IF 6.2 ) Pub Date : 2020-10-07 , DOI: 10.1016/j.jmrt.2020.09.083
Abad Arcos-Alomía , Pascual Bartolo-Pérez , Alex Valadez-González , Pedro Jesus Herrera-Franco

The present work examines the effect of incorporating two different concentrations, 0.1% and 0.25%, of silane-functionalized graphene nanoplatelets GnP-GPTMS onto the carbon fiber surface of a quasi-isotropic laminate with the aim to enhance both, the laminate in-plane and the bearing strength, in a pin-loaded joint. Delamination damage modes associated with high-stress gradients were also suppressed in the in-plane loaded laminates, significantly increasing load-carrying capability. The bearing strength of a pin-loaded hole is correlated to the tensile, compression, and shear properties. The results showed an improvement of 13.8% in tensile strength for the 0.1% GnP-GPTMS concentration, as well as 17.3% for compressive strength, while for shear strength, the improvement was 11.89% for the laminate. On the other hand, the behavior of the material in the pin-loaded joint showed an increase of 10.83% for the bearing strength with the 0.1% GnP-GPTMS, fiber surface treatment. Distinct differences were noticed between the tensile stress-loaded area and the area of the residual impression of the pin in the failure mode between the only-resin treated carbon fiber composites and GnPs treated fibers. It was evident, that the interfacial shear strength (IFSS) played an important role on the failure mode. In the compression area in the pin-loaded region, there was a marked presence of a permanent deformation in the matrix. With a closer look at the local failure phenomena at the compression loaded area, there was no fiber kinking and the degree of matrix plasticity disappeared according to the level of interfacial adhesion.



中文翻译:

通过使用石墨烯纳米片修饰纤维-基体间相来增强准各向同性碳纤维/环氧树脂基多尺度层压板的面内和钉载荷承载行为

本工作研究了将两种不同浓度(0.1%和0.25%)的硅烷官能化石墨烯纳米片GnP-GPTMS掺入到准各向同性层压板的碳纤维表面上的效果,目的是增强两种层压板的面内以及销钉连接的轴承强度。在面内加载的层压板中,与高应力梯度相关的分层破坏模式也得到了抑制,从而显着提高了承载能力。销钉孔的承载强度与拉伸,压缩和剪切特性相关。结果表明,在0.1%GnP-GPTMS浓度下,拉伸强度提高了13.8%,在抗压强度上提高了17.3%,而在剪切强度下,层压板提高了11.89%。另一方面,在采用0.1%GnP-GPTMS纤维表面处理的情况下,销钉连接的材料的行为对于轴承强度而言增加了10.83%。在仅树脂处理的碳纤维复合材料和GnPs处理的纤维之间,在破坏模式下,拉伸应力加载面积和销钉残留压痕面积之间存在明显差异。显然,界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。用0.1%GnP-GPTMS对83%的轴承强度进行纤维表面处理。在仅树脂处理的碳纤维复合材料和GnPs处理的纤维之间,在拉伸模式下,拉伸应力加载面积与销钉残余压痕面积之间存在明显差异。显然,界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。用0.1%GnP-GPTMS对83%的轴承强度进行纤维表面处理。在仅树脂处理的碳纤维复合材料和GnPs处理的纤维之间,在破坏模式下,拉伸应力加载面积和销钉残留压痕面积之间存在明显差异。显然,界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。在仅树脂处理的碳纤维复合材料和GnPs处理的纤维之间,在拉伸模式下,拉伸应力加载面积与销钉残余压痕面积之间存在明显差异。显然,界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。在仅树脂处理的碳纤维复合材料和GnPs处理的纤维之间,在破坏模式下,拉伸应力加载面积和销钉残留压痕面积之间存在明显差异。显然,界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。界面剪切强度(IFSS)在破坏模式中起重要作用。在销钉加载区域的压缩区域中,基体中明显存在永久变形。仔细观察压缩载荷区域的局部破坏现象,就没有纤维扭结,并且根据界面粘附水平,基体可塑性的程度也消失了。

更新日期:2020-10-07
down
wechat
bug