当前位置: X-MOL 学术Adv. Eng. Softw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of a standard pneumatic piston gauge using finite element simulation technique vs cross-float, theoretical and Monte Carlo approaches
Advances in Engineering Software ( IF 4.8 ) Pub Date : 2020-10-07 , DOI: 10.1016/j.advengsoft.2020.102920
Jasveer Singh , LA Kumaraswamidhas , Neha Bura , Shanay Rab , Nita Dilawar Sharma

Simulation techniques when applied for metrological estimations have recently emerged as a tool for potential improvement in design and performance aspects. The current paper reports one such application for the numerical estimation of the distortions and strains developed in a standard piston gauge leading to the estimation of the effective area and the pressure distortion coefficient up to a pressure of 4 MPa, through the application of finite element analysis (FEA) technique and a comparative analysis of its outcome with the experimentally and theoretically determined values as well as the Monte-Carlo simulation results. The experimental characterization was done using cross-floating method while theoretical approach used the Dadson's equations. The strain values for the piston-cylinder assembly under pressure, obtained from the FEA simulation, were used to calculate the distortions in the piston and cylinder, which in turn were used for calculating the effective area of the piston gauge at various pressure points. From the obtained effective area with pressure values, the zero pressure effective area and the distortion coefficients were calculated. In addition, the results of FEA were also compared with the previously published results from the Monte Carlo Simulation on the same piston-cylinder assembly. Interestingly, the uncertainty associated with the distortion coefficient estimated using FEA, was found to be an order of magnitude lower as compared to the other approaches.



中文翻译:

使用有限元模拟技术与交叉浮点,理论和蒙特卡洛方法对标准气动活塞规进行表征

当将模拟技术应用于计量估计时,它已成为一种在设计和性能方面进行潜在改进的工具。本文报道了这样一种应用,它通过有限元分析的方法对标准活塞式压力计中产生的变形和应变进行数值估算,从而可以估算有效面积和压力畸变系数(最高压力为4 MPa)。 (FEA)技术,并通过实验和理论上确定的值以及蒙特卡洛模拟结果对其结果进行比较分析。实验表征是使用交叉浮点法进行的,而理论方法是使用Dadson方程进行的。活塞-气缸组件在压力下的应变值,从有限元分析中获得的结果用于计算活塞和气缸的变形,进而用于计算活塞表在不同压力点的有效面积。从获得的具有压力值的有效面积,计算零压力有效面积和变形系数。此外,FEA的结果也与先前在同一活塞缸组件上的Monte Carlo Simulation的结果进行了比较。有趣的是,发现与使用FEA估计的失真系数相关的不确定性比其他方法要低一个数量级。从获得的具有压力值的有效面积,计算零压力有效面积和变形系数。此外,FEA的结果也与先前在同一活塞缸组件上的Monte Carlo Simulation的结果进行了比较。有趣的是,发现与使用FEA估计的失真系数相关的不确定性比其他方法要低一个数量级。从获得的具有压力值的有效面积,计算零压力有效面积和变形系数。此外,FEA的结果也与先前在同一活塞缸组件上的Monte Carlo Simulation的结果进行了比较。有趣的是,发现与使用FEA估计的失真系数相关的不确定性比其他方法要低一个数量级。

更新日期:2020-10-07
down
wechat
bug