当前位置: X-MOL 学术Prog. Earth Planet. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A coupled core-mantle evolution: review and future prospects
Progress in Earth and Planetary Science ( IF 3.5 ) Pub Date : 2020-10-06 , DOI: 10.1186/s40645-020-00374-8
Takashi Nakagawa

In this review, I provide the current status and future prospects for the coupled core-mantle evolution and specifically summarize the constraints arising from geomagnetism and paleomagnetism on the long-term secular variations of the geomagnetic field. The heat flow across the core-mantle boundary (CMB) is essential for determining the best-fit scenario that explains the observational data of geomagnetic secular variations (e.g., onset timing of the inner core growth, geomagnetic polarity reversals, and westward drift) and should include the various origins of the heterogeneous structures in the deep mantle that have affected the heat transfer across the core-mantle boundary for billions of years. The coupled core-mantle evolution model can potentially explain the onset timing of the inner core and its influence on the long-term geomagnetic secular variations, but it is still controversial among modeling approaches on the core energetics because the paleomagnetic data contains various uncertainties. Additionally, with the coupled core-mantle evolution model in geodynamo simulations, the frequency of the geomagnetic polarity reversals can be explained with the time variations of the heat flow across the CMB. Additionally, the effects of the stable region in the outermost outer core to the magnetic evolution are also crucial but there would be still uncertain for their feasibility.

However, despite this progress in understanding the observational data for geomagnetic secular variations, there are several unresolved issues that should be addressed in future investigations: (1) initial conditions—starting with the solidification of the global magma ocean with the onset timing of plate tectonics and geodynamo actions and (2) planetary habitability—how the dynamics of the Earth’s deep interior affects the long-term surface environment change that has been maintained in the Earth’s multisphere coupled system.



中文翻译:

核心幔子的耦合演化:回顾与未来前景

在这篇综述中,我提供了耦合的地幔演化的现状和未来展望,并特别总结了地磁和古磁学对地磁场长期长期变化的制约。跨芯-地幔边界(CMB)的热流对于确定最合适的方案至关重要,该方案可解释地磁长期变化的观测数据(例如,内芯生长的开始时间,地磁极性反转和向西漂移)和应该包括深层地幔中非均质结构的各种起源,这些起源已经影响了数十亿年跨核心地幔边界的传热。耦合的地幔幔演化模型可以潜在地解释内核的开始时间及其对长期地磁长期变化的影响,但是由于古磁数据包含各种不确定性,因此在岩心能量学的各种建模方法中仍然存在争议。此外,通过在地发电机模拟中使用耦合的地幔幔演化模型,可以通过跨CMB的热流的时间变化来解释地磁极性反转的频率。另外,最外层外核的稳定区域对磁演化的影响也很关键,但其可行性仍不确定。此外,通过在地发电机模拟中使用耦合的地幔幔演化模型,可以通过跨CMB的热流的时间变化来解释地磁极性反转的频率。另外,最外层外核的稳定区域对磁演化的影响也很关键,但其可行性仍不确定。此外,通过在地发电机模拟中使用耦合的地幔幔演化模型,可以通过跨CMB的热流的时间变化来解释地磁极性反转的频率。此外,最外层外核的稳定区域对磁演化的影响也至关重要,但其可行性仍不确定。

然而,尽管在了解地磁长期变化的观测数据方面取得了进步,但仍有一些未解决的问题应在未来的研究中解决:(1)初始条件-从全球岩浆海洋的凝固开始,随着板块构造的开始时间开始以及地球动力学动作和(2)行星可居住性-地球深层内部的动力学如何影响长期存在于地球多球耦合系统中的地面环境变化。

更新日期:2020-10-07
down
wechat
bug