当前位置: X-MOL 学术Int. J. of Precis. Eng. and Manuf.-Green Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Control Technologies for Floating Offshore Wind Energy System: A Review
International Journal of Precision Engineering and Manufacturing-Green Technology ( IF 5.3 ) Pub Date : 2020-10-06 , DOI: 10.1007/s40684-020-00269-5
Kwangtae Ha , Hoai Vu Anh Truong , Tri Dung Dang , Kyoung Kwan Ahn

This paper presents the recent control technologies being researched for floating offshore wind energy system (FOWES). FOWES has been getting many attentions recently as an alternative energy system utilizing vast sustainable wind resource away from land with little restriction by human societies, artificial and natural obstacles. However, not only due to the harsh environmental conditions such as strong wind, wave, and current, but also due to the platform motions such as surge, sway, heave, pitch, roll, and yaw, there could occur many problems including less energy capture than expected, frequent emergency stops, turbine structural instability, and fatigues resulting in early failures, which stay the levelized cost of energy (LCOE) still high compared to conventional fixed offshore wind energy system. These risks could be lowered by operating the turbine close to the optimum point and harvesting wind energy efficiently even under strong wind conditions with the properly applied control technologies, while reducing the loads on structural components. Many researches have been actively going on not only by numerical approaches, but also by experimental tests. This study is wrapping the most recent researches on control technologies for promising floating offshore wind energy system according to different substructure designs such as a spar type, semi-submergible type, tension-leg platform (TLP) type, and barge type, and discusses about its challenges as well.



中文翻译:

浮式海上风能系统的最新控制技术:回顾

本文介绍了正在研究的用于海上浮动风能系统(FOWES)的最新控制技术。FOWES作为一种替代能源系统,最近得到了广泛的关注,该系统利用巨大的可持续风资源远离陆地,几乎不受人类社会,人为和自然障碍的限制。但是,不仅由于恶劣的环境条件(例如强风,波浪和海流),而且还由于平台运动(例如喘振,摇摆,起伏,俯仰,侧倾和偏航),可能会出现许多问题,包括更少的能量与预期的相比,频繁的紧急停车,涡轮机结构不稳定以及疲劳导致早期故障,与传统的固定式海上风能系统相比,其平均能源成本(LCOE)仍然很高。可以通过以下方法来降低这些风险:使涡轮机靠近最佳点运行,并且即使在强风条件下使用适当应用的控制技术也可以有效地收集风能,同时减少结构部件的负荷。许多研究不仅通过数值方法而且还通过实验测试积极地进行着。这项研究根据不同的子结构设计(如梁形,半潜式,张拉腿平台(TLP)型和驳船型)对有前途的浮动海上风能系统的控制技术进行了最新研究,并讨论了有关它的挑战也是如此。同时减少结构部件的负荷。许多研究不仅通过数值方法而且还通过实验测试积极地进行着。这项研究根据不同的子结构设计(如梁形,半潜式,张拉腿平台(TLP)型和驳船型)对有前途的浮动海上风能系统的控制技术进行了最新研究,并讨论了有关它的挑战也是如此。同时减少结构部件的负荷。许多研究不仅通过数值方法而且还通过实验测试积极地进行着。这项研究根据不同的子结构设计(如梁形,半潜式,张拉腿平台(TLP)型和驳船型)对有前途的浮动海上风能系统的控制技术进行了最新研究,并讨论了有关它的挑战也是如此。

更新日期:2020-10-07
down
wechat
bug