当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and simulation of C45 steel bar heat treatment with the GTAW method application
Heat and Mass Transfer ( IF 1.7 ) Pub Date : 2020-10-07 , DOI: 10.1007/s00231-020-02964-0
Adam Kulawik , Joanna Wróbel , Michał Sobiepański

The motivation of the paper is an attempt to indicate the relationship between the selected Gas Tungsten Arc Welding (GTAW) technology and the parameters of the boundary conditions for the simulation of the heat treatment process of elements made of medium-carbon steel. The authors of the paper prepared and described a series of numerical simulations and experimental studies concerning this problem. Simulations often use previously-developed analytical equations to describe the relationships between process parameters. The results obtained for the input data for determining the heat source power (voltage) from the analytical equation and experimental measurements were compared. Several cases of the size of the areas of direct influence of the GTAW arc (various radius of a simulation heat source) were analysed. All computations were performed in the author’s software based on Finite Element Method (FEM) solving the heat transfer equation with the convection term. In this paper, the GTAW heating parameters (boundary condition) for a current intensity equal 30 A were identified. With the assumed arc efficiency coefficient, the arc voltage set on the device and the measured value of the arc current, the optimum radius of the heat source was determined. The identification of parameters was confirmed by the convergence of the results of numerical simulation in three-dimensional space (3D) with the results of the experiment. Unfortunately, the applied methodology did not give good results for current equal to 50A.



中文翻译:

GTAW方法在C45钢筋热处理中的实验与模拟

本文的目的是试图指出所选的钨极氩弧焊(GTAW)技术与边界条件参数之间的关系,以模拟中碳钢制成的元素的热处理过程。该论文的作者准备并描述了有关此问题的一系列数值模拟和实验研究。模拟通常使用以前开发的解析方程来描述过程参数之间的关系。比较从解析方程和实验测量中获得的用于确定热源功率(电压)的输入数据的结果。分析了GTAW电弧直接影响区域的大小(模拟热源的各种半径)的几种情况。所有计算均在基于有限元方法(FEM)的作者软件中进行,并用对流项解决了传热方程。在本文中,确定了电流强度等于30 A时的GTAW加热参数(边界条件)。利用假定的电弧效率系数,在设备上设置的电弧电压和电弧电流的测量值,确定热源的最佳半径。通过在三维空间(3D)中的数值模拟结果与实验结果的收敛,确认了参数的确定。不幸的是,当电流等于50A时,所应用的方法并没有给出好的结果。确定了电流强度等于30 A的GTAW加热参数(边界条件)。利用假定的电弧效率系数,在设备上设置的电弧电压和电弧电流的测量值,确定热源的最佳半径。通过在三维空间(3D)中的数值模拟结果与实验结果的收敛,确认了参数的确定。不幸的是,当电流等于50A时,所应用的方法并没有给出好的结果。确定了电流强度等于30 A的GTAW加热参数(边界条件)。利用假定的电弧效率系数,在设备上设置的电弧电压和电弧电流的测量值,确定热源的最佳半径。通过在三维空间(3D)中的数值模拟结果与实验结果的收敛,确认了参数的确定。不幸的是,当电流等于50A时,所应用的方法并没有给出好的结果。通过在三维空间(3D)中的数值模拟结果与实验结果的收敛,确认了参数的确定。不幸的是,当电流等于50A时,所应用的方法并没有给出好的结果。通过在三维空间(3D)中的数值模拟结果与实验结果的收敛,确认了参数的确定。不幸的是,当电流等于50A时,所应用的方法并没有给出好的结果。

更新日期:2020-10-07
down
wechat
bug