当前位置: X-MOL 学术J. Microelectromech. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Novel Thermistor-Based RF Power Sensor With Wheatstone Bridge Fabricating on MEMS Membrane
Journal of Microelectromechanical Systems ( IF 2.5 ) Pub Date : 2020-10-01 , DOI: 10.1109/jmems.2020.3011994
Jian-Hua Li , Xiaoping Liao , Chenlei Chu

A novel thermistor-based RF power sensor with Wheatstone full-bridge structure is proposed using MEMS technology combined with monolithic microwave integrated circuit (MMIC) process in this paper. A MEMS substrate membrane is carefully designed beneath the hot area by back etching technology. Such a design can effectively suppress the longitudinal heat loss, which facilitates the improvement of sensitivity. In addition, in this design, low TCR (temperature coefficient of resistance) TaN (tantalum nitride) resistors are adopted to achieve the stability of impedance matching. Measurement results show that the output response of this device has excellent linearity with the power from 1 to 200mV. Considering the effect of the distance between the hot and cold areas, three sensor configurations with different arrangements of thermistors were investigated experimentally. And their corresponding sensitivities are 0.16 mV/mW, 0.19 mV/mW and 0.22 mV/mW at 10GHz, respectively. Meanwhile, the measured response times of these three configuration sensors are 20.7 ms, 22.3 ms and 27.2 ms, respectively. Therefore, there is a trade-off consideration between high sensitivity and fast response time. Moreover, the measured return losses are less than −20 dB in the frequency range from 10 MHz to 20GHz. This indicates that these devices have good matching characteristics. The proposed thermistor-based RF MEMS power sensor demonstrates a good performance, especially high sensitivity and stable impedance match, providing great application potential. [2020-0260]

中文翻译:

一种新型基于热敏电阻的射频功率传感器,在 MEMS 膜上制造惠斯通电桥

本文采用MEMS技术结合单片微波集成电路(MMIC)工艺,提出了一种新型的惠斯通全桥结构热敏电阻射频功率传感器。通过回蚀刻技术在热区下方精心设计了 MEMS 基板膜。这样的设计可以有效抑制纵向热损失,有利于灵敏度的提高。此外,在本设计中,采用了低TCR(电阻温度系数)TaN(氮化钽)电阻来实现阻抗匹配的稳定性。测量结果表明,该器件的输出响应在1~200mV的功率范围内具有良好的线性度。考虑到冷热区距离的影响,实验研究了具有不同热敏电阻排列的三种传感器配置。它们在 10GHz 下的相应灵敏度分别为 0.16 mV/mW、0.19 mV/mW 和 0.22 mV/mW。同时,这三个配置传感器的实测响应时间分别为20.7 ms、22.3 ms和27.2 ms。因此,需要在高灵敏度和快速响应时间之间进行权衡考虑。此外,在 10 MHz 至 20 GHz 的频率范围内,测得的回波损耗小于 -20 dB。这表明这些设备具有良好的匹配特性。所提出的基于热敏电阻的射频 MEMS 功率传感器表现出良好的性能,特别是高灵敏度和稳定的阻抗匹配,具有巨大的应用潜力。[2020-0260] 在 10GHz 时分别为 16 mV/mW、0.19 mV/mW 和 0.22 mV/mW。同时,这三个配置传感器的实测响应时间分别为20.7 ms、22.3 ms和27.2 ms。因此,需要在高灵敏度和快速响应时间之间进行权衡考虑。此外,在 10 MHz 至 20 GHz 的频率范围内,测得的回波损耗小于 -20 dB。这表明这些设备具有良好的匹配特性。所提出的基于热敏电阻的射频 MEMS 功率传感器表现出良好的性能,特别是高灵敏度和稳定的阻抗匹配,具有巨大的应用潜力。[2020-0260] 在 10GHz 时分别为 16 mV/mW、0.19 mV/mW 和 0.22 mV/mW。同时,这三个配置传感器的实测响应时间分别为20.7 ms、22.3 ms和27.2 ms。因此,需要在高灵敏度和快速响应时间之间进行权衡考虑。此外,在 10 MHz 至 20 GHz 的频率范围内,测得的回波损耗小于 -20 dB。这表明这些设备具有良好的匹配特性。所提出的基于热敏电阻的射频 MEMS 功率传感器表现出良好的性能,特别是高灵敏度和稳定的阻抗匹配,具有巨大的应用潜力。[2020-0260] 在高灵敏度和快速响应时间之间需要权衡考虑。此外,在 10 MHz 至 20 GHz 的频率范围内,测得的回波损耗小于 -20 dB。这表明这些设备具有良好的匹配特性。所提出的基于热敏电阻的射频 MEMS 功率传感器表现出良好的性能,特别是高灵敏度和稳定的阻抗匹配,具有巨大的应用潜力。[2020-0260] 在高灵敏度和快速响应时间之间需要权衡考虑。此外,在 10 MHz 至 20 GHz 的频率范围内,测得的回波损耗小于 -20 dB。这表明这些设备具有良好的匹配特性。所提出的基于热敏电阻的射频 MEMS 功率传感器表现出良好的性能,特别是高灵敏度和稳定的阻抗匹配,具有巨大的应用潜力。[2020-0260]
更新日期:2020-10-01
down
wechat
bug