当前位置: X-MOL 学术Biotechnol. Biotechnol. Equip. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DIA (Data Independent Acquisition) proteomic based study on maize filling-kernel stage drought stress-responsive proteins and metabolic pathways
Biotechnology & Biotechnological Equipment ( IF 1.5 ) Pub Date : 2020-01-01 , DOI: 10.1080/13102818.2020.1827981
Yatong Yang 1, 2 , Anyi Dong 1, 2 , Tinashe Zenda 1, 2 , Songtao Liu 1, 2 , Xinyue Liu 1, 2 , Yafei Wang 1, 2 , Jiao Li 1, 2 , Huijun Duan 1, 2
Affiliation  

Abstract Drought is one of the most severe environmental stressors hampering maize (Zea mays L.) production worldwide. Therefore, revealing the molecular mechanisms underpinning maize drought tolerance is critical for guiding drought resistance breeding and ensuring global food security. Herein, we performed a data-independent acquisition (DIA) proteomics-based comparative analysis of the proteome responses of two contrasting maize hybrids (drought-tolerant NongDan 476 and drought-sensitive ZhongXin 978) exposed to 12 days of water-deficit (drought) treatment at the kernel filling stage. Resultantly, our DIA-based analysis approach identified a total of 826 differentially abundant proteins (DAPs), among which 7 DAPs were specifically accumulated in tolerant genotype ND 476 under drought treatment conditions. Moreover, our results showed that there were significant differences in drought stress responses between the two hybrids at the proteomic level. Predominantly, our analysis revealed that maize drought tolerance is attributed to some key proteins such as chaperones, DNA replication related enzymes, vicilin and ABA-responsive RAB17 protein, participating in several metabolic networks including starch and sucrose metabolism, terpenoid backbone biosynthesis, cyanoamino acid metabolism and carbon metabolism pathways. Our findings provide further insights into the drought stress tolerance mechanisms in maize at the grain filling period, in addition to useful reference data for maize drought resistance breeding.

中文翻译:

DIA(数据独立采集)基于蛋白质组学的玉米灌浆期干旱胁迫响应蛋白和代谢途径研究

摘要 干旱是世界范围内阻碍玉米 (Zea mays L.) 生产的最严重的环境压力因素之一。因此,揭示支撑玉米耐旱的分子机制对于指导抗旱育种和确保全球粮食安全至关重要。在此,我们对暴露于缺水 12 天(干旱)的两种对比玉米杂交种(耐旱农单 476 和耐旱中新 978)的蛋白质组反应进行了基于数据独立采集(DIA)的蛋白质组学比较分析填仁期处理。结果,我们基于 DIA 的分析方法共鉴定了 826 种差异丰富的蛋白质 (DAP),其中 7 种 DAP 在干旱处理条件下在耐受基因型 ND 476 中特异性积累。而且,我们的结果表明,在蛋白质组学水平上,两种杂种之间的干旱胁迫反应存在显着差异。主要是,我们的分析表明,玉米的耐旱性归因于一些关键蛋白质,如分子伴侣、DNA 复制相关酶、豌豆蛋白和 ABA 反应性 RAB17 蛋白,参与多种代谢网络,包括淀粉和蔗糖代谢、萜类骨架生物合成、氰基氨基酸代谢和碳代谢途径。除了为玉米抗旱育种提供有用的参考数据外,我们的研究结果还进一步了解了玉米在灌浆期的干旱胁迫耐受机制。我们的分析表明,玉米的耐旱性归因于一些关键蛋白质,如分子伴侣、DNA 复制相关酶、豌豆蛋白和 ABA 响应性 RAB17 蛋白,它们参与多种代谢网络,包括淀粉和蔗糖代谢、萜类骨架生物合成、氰基氨基酸代谢和碳代谢途径。除了为玉米抗旱育种提供有用的参考数据外,我们的研究结果还进一步了解了玉米在灌浆期的干旱胁迫耐受机制。我们的分析表明,玉米的耐旱性归因于一些关键蛋白质,如分子伴侣、DNA 复制相关酶、豌豆蛋白和 ABA 响应性 RAB17 蛋白,它们参与多种代谢网络,包括淀粉和蔗糖代谢、萜类骨架生物合成、氰基氨基酸代谢和碳代谢途径。除了为玉米抗旱育种提供有用的参考数据外,我们的研究结果还进一步了解了玉米在灌浆期的干旱胁迫耐受机制。氰基氨基酸代谢和碳代谢途径。除了为玉米抗旱育种提供有用的参考数据外,我们的研究结果还进一步了解了玉米在灌浆期的干旱胁迫耐受机制。氰基氨基酸代谢和碳代谢途径。除了为玉米抗旱育种提供有用的参考数据外,我们的研究结果还进一步了解了玉米在灌浆期的干旱胁迫耐受机制。
更新日期:2020-01-01
down
wechat
bug