当前位置: X-MOL 学术SIAM J. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Asymptotics of Coupled Reaction-Diffusion Fronts With Multiple Static and Diffusing Reactants: Uranium Oxidation in Water Vapor
SIAM Journal on Applied Mathematics ( IF 1.9 ) Pub Date : 2020-10-05 , DOI: 10.1137/19m1309791
S. R. Monisha Natchiar , Richard E. Hewitt , Phillip D. D. Monks , Peter Morrall

SIAM Journal on Applied Mathematics, Volume 80, Issue 5, Page 2249-2270, January 2020.
Large-time asymptotic solutions for the reaction-diffusion front between one static reactant and one diffusing reactant are known. These states apply to single-step reactions with a mean-field reaction rate proportional to $\rho^m \alpha^n$ (with $m,n\ge1$), where $\rho, \alpha$ are concentrations of the diffusing and static reactants, respectively. Such reaction kinetics commonly arise in, for example, simple corrosion models of a porous solid, subject to a diffusing reactant. Here we address a more complex two-step corrosion reaction for oxidation of uranium in a water-vapor environment. In this case, additional complexity arises through a pair of coupled reaction fronts (one with $m=2, n=1$ and the other with $m=3, n=1$). Furthermore, we allow for material expansion owing to the corrosion process and a strong dependence of diffusion coefficients on the static reactant distribution. In the large-time limit there are four main asymptotic regions, comprising two diffusion layers and two reaction fronts. Asymptotic matching of these regions allows us to construct a large-time solution that gives analytical predictions for the positions of the two propagating fronts, thickness of the diffusion layers, and concentration of diffusing species outside of the fronts. This is the first mechanistic model of uranium oxidation in water vapor and predicts a thin propagating subsurface (hydride) layer, as recently observed in atom-probe tomography experiments.


中文翻译:

具有多种静态和扩散反应物的耦合反应扩散前沿的渐近性:水蒸气中的铀氧化

SIAM应用数学杂志,第80卷,第5期,第2249-2270页,2020年1月。
已知一种静态反应物和一种扩散反应物之间反应扩散前沿的大渐近解。这些状态适用于单步反应,其平均场反应速率与$ \ rho ^ m \ alpha ^ n $($ m,n \ ge1 $)成比例,其中$ \ rho,\ alpha $是分别是扩散反应物和静态反应物。这样的反应动力学通常发生在例如多孔固体的简单腐蚀模型中,该模型受到扩散反应物的影响。在这里,我们解决了在水蒸气环境中铀氧化的更复杂的两步腐蚀反应。在这种情况下,通过一对耦合的反应前沿(一个$ m = 2,n = 1 $,另一个$ m = 3,n = 1 $)产生了额外的复杂性。此外,由于腐蚀过程以及扩散系数对静态反应物分布的强烈依赖性,我们允许材料膨胀。在大时限内,有四个主要的渐近区域,包括两个扩散层和两个反应前沿。这些区域的渐近匹配使我们能够构建一个长时间解,从而为两个传播前沿的位置,扩散层的厚度以及前沿外部扩散物种的浓度提供分析预测。这是铀在水蒸气中氧化的第一个机理模型,并预测了薄的传播性地下(氢化物)层,正如最近在原子探针层析成像实验中观察到的那样。包括两个扩散层和两个反应前沿。这些区域的渐近匹配使我们能够构建一个长时间解,从而为两个传播前沿的位置,扩散层的厚度以及前沿外部扩散物种的浓度提供分析预测。这是铀在水蒸气中氧化的第一个机理模型,并预测了薄的传播性地下(氢化物)层,正如最近在原子探针层析成像实验中观察到的那样。包括两个扩散层和两个反应前沿。这些区域的渐近匹配使我们能够构建一个长时间解,从而为两个传播前沿的位置,扩散层的厚度以及前沿外部扩散物种的浓度提供分析预测。这是铀在水蒸气中氧化的第一个机理模型,并预测了薄的传播性地下(氢化物)层,正如最近在原子探针层析成像实验中观察到的那样。
更新日期:2020-10-07
down
wechat
bug