当前位置: X-MOL 学术Contrib. Plasm. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study on high‐energy surface arc plasma excitation control of cylindrical detached shock wave
Contributions to Plasma Physics ( IF 1.3 ) Pub Date : 2020-10-05 , DOI: 10.1002/ctpp.202000067
Bingliang Tang 1 , Shanguang Guo 1 , Liang Hua 1
Affiliation  

In this study, an electrical parameter test system and a high‐speed Schlieren system are used to study the control of a cylindrical detached shock wave through high‐energy surface arc plasma excitation. The results show that, when plasma excitation is not applied, the bow shockwave angle around the cylinder is 52°. After the plasma excitation is applied, the arc discharge releases a large amount of heat within a short time, generating a shockwave and a control gas bulb (CGB). As a result, the bow shockwave angle first decreases and then increases, the pressure ratio before and after the shockwave decreases, and the intensity of the bow shockwave weakens. At t = 280 μs, the bow shockwave angle is reduced to a minimum of 46°. The effective interference time of high‐energy surface arc plasma excitation on a cylindrical detached shockwave is 820 μs. A high temperature is used to control the heating effect of the bubbles, which will increase the local sound velocity near the wall, reduce the local Mach number, cause the sound velocity to move online, and eventually push the bow shockwave away from the cylinder. Concurrently, heating will accelerate the gas flow, reduce the pressure, and cause the mass flow in the unit flow area of the heated area to decrease, resulting in a strong compression effect, which deforms the bow shockwave. The high‐energy surface arc plasma excitation will provide a potential technical means for high‐speed aircraft detached shockwave control.

中文翻译:

圆柱分离激波高能表面电弧等离子体激发控制的实验研究

在这项研究中,使用电参数测试系统和高速Schlieren系统来研究通过高能表面电弧等离子体激发来控制圆柱形分离冲击波。结果表明,当不施加等离子激发时,圆柱体周围的弓形冲击波角为52°。施加等离子激发后,电弧放电会在短时间内释放大量热量,从而产生冲击波和控制灯泡(CGB)。结果,弓形冲击波角先减小然后增大,冲击波前后的压力比减小,并且弓形冲击波的强度减弱。在t = 280μs时,船首冲击波角减小到最小46°。高能表面电弧等离子体激发对圆​​柱形分离激波的有效干扰时间为820μs。使用高温来控制气泡的加热效果,这将增加壁附近的局部声速,减小局部马赫数,使声速在线移动,并最终将船首激波推离圆柱体。同时,加热将加速气流,降低压力,并使加热区域的单位流量区域中的质量流量减少,从而产生强大的压缩效果,从而使船首激波变形。高能表面电弧等离子体激发将为高速飞机分离式冲击波控制提供潜在的技术手段。并最终将船首冲击波推离圆柱。同时,加热将加速气流,降低压力,并使加热区域的单位流量区域中的质量流量减少,从而产生强大的压缩效果,从而使船首激波变形。高能表面电弧等离子体激发将为高速飞机分离式冲击波控制提供潜在的技术手段。并最终将船首冲击波推离圆柱。同时,加热将加速气流,降低压力,并使加热区域的单位流量区域中的质量流量减少,从而产生强大的压缩效果,从而使船首激波变形。高能表面电弧等离子体激发将为高速飞机分离式冲击波控制提供潜在的技术手段。
更新日期:2020-10-05
down
wechat
bug