当前位置: X-MOL 学术J. Ind. Eng. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adsorption of Ciprofloxacin from Water: A Comprehensive Review
Journal of Industrial and Engineering Chemistry ( IF 6.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.jiec.2020.09.023
Chinenye Adaobi Igwegbe , Stephen N. Oba , Chukwunonso O. Aniagor , Adewale George Adeniyi , Joshua O. Ighalo

Abstract In this paper, the adsorption of Ciprofloxacin (CIP) from water in studies over the last decade was reviewed. The purpose of this review is to analyse the vast body of literature on the subject, identify key empirical findings on specific investigation domains, establish knowledge gaps and grey areas that could serve as a foundation for other investigations by researchers and predict future perspectives in the research area. The highest reported adsorption capacity for CIP was 1564 mg/g for magnetic N-doped porous carbon. The major mechanisms of CIP uptake are electrostatic interactions, π-π interactions, H-bonds, hydrophobic interactions and pore diffusion. CIP uptake was best-fit to either the Langmuir and Freundlich isotherm and the pseudo-second-order kinetic model. For most adsorbent types, reusability of up to 4 cycles could be achieved with good retention of uptake capacity. The review further showed that CIP uptake in adsorption columns was majorly best fitted to the Thomas and Yoon-Nelson models. In competitive adsorption scenarios, the presence of other pharmaceuticals usually decreases the uptake of CIP. Looking to the future, studies on novel hybrid processes, adsorbent modification, composite adsorbent development, neural network modelling, molecular simulations and used adsorbent disposal techniques are likely to increase for CIP adsorption.

中文翻译:

从水中吸附环丙沙星:综合评价

摘要 本文综述了近十年来从水中吸附环丙沙星(CIP)的研究。本综述的目的是分析关于该主题的大量文献,确定特定调查领域的关键实证结果,建立知识差距和灰色地带,作为研究人员其他调查的基础,并预测研究的未来前景。区域。对于磁性 N 掺杂的多孔碳,CIP 的最高报告吸附容量为 1564 mg/g。CIP 吸收的主要机制是静电相互作用、π-π 相互作用、H 键、疏水相互作用和孔扩散。CIP 吸收最适合 Langmuir 和 Freundlich 等温线以及伪二级动力学模型。对于大多数吸附剂类型,可以实现多达 4 个循环的可重复使用性,同时保持良好的吸收能力。审查进一步表明,吸附柱中的 CIP 吸收主要最适合 Thomas 和 Yoon-Nelson 模型。在竞争性吸附情况下,其他药物的存在通常会降低 CIP 的吸收。展望未来,对 CIP 吸附的新型混合工艺、吸附剂改性、复合吸附剂开发、神经网络建模、分子模拟和已用吸附剂处理技术的研究可能会增加。
更新日期:2021-01-01
down
wechat
bug