当前位置: X-MOL 学术Int. J. Polym. Mater. Polym. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation
International Journal of Polymeric Materials and Polymeric Biomaterials ( IF 2.5 ) Pub Date : 2020-10-04 , DOI: 10.1080/00914037.2020.1825083
Özlem Biçen Ünlüer 1 , Sibel Emir Diltemiz 1 , Mehmet Girayhan Say 2 , Deniz Hür 1 , Rıdvan Say 2 , Arzu Ersöz 1
Affiliation  

Abstract

Three-dimensional (3D) bioprinting technologies have great attention in different researching areas such as tissue engineering, medicine, etc. due to its maximum mimetic property of natural biomaterials by providing cell combination, growth factors, and other biomaterials. Bioprinting of tissues, organs, or drug delivery systems emerged layer-by-layer deposition of bioinks. 3D bioprinting technique has some complexity such as choice of bioink combination, cell type, growth, and differentiation. In this study, a composite material in 3D bioprinting studies has been developed for biofabrication of the cell carrying scaffolds namely cryogenic scaffolds. Cryogenic scaffolds are highly elastic and have a continuous interconnected macroporous structure in 3D biomaterials that enable the cell attachment, viability, and proliferation. Freeze-drying cryogelation process for the formation of cryogel scaffolds has been achieved firstly among 3D bioprinting studies. Cryogenic gelatin–hyaluronic acid (Gel–HA)-based 3D-bioprinted scaffolds have been fabricated and characterized by scanning electron microscope (SEM), optical microscope images, tensile tests, determination of swelling degree, and porosity. Then, L929 cells from mouse C3H/An have been attached to cryogenic Gel–HA scaffolds. Cell attachment, viability, and proliferation on cryogenic scaffolds have been investigated for 7 days. The results showed that a combination of 3D bioprinting technologies and cryogenic process provided a new direction on biomedical scaffolds.



中文翻译:

设计聚合物支架的强大组合:3D 生物打印和冷冻凝胶

摘要

三维(3D)生物打印技术通过提供细胞组合、生长因子和其他生物材料,最大限度地模拟天然生物材料,因此在组织工程、医学等不同研究领域受到极大关注。组织、器官或药物输送系统的生物打印出现了生物墨水的逐层沉积。3D 生物打印技术具有一些复杂性,例如生物墨水组合的选择、细胞类型、生长和分化。在这项研究中,开发了一种用于 3D 生物打印研究的复合材料,用于细胞携带支架(即低温支架)的生物制造。低温支架具有高弹性,并在 3D 生物材料中具有连续互连的大孔结构,可实现细胞附着、活力和增殖。用于形成冷冻凝胶支架的冷冻干燥冷冻凝胶化过程已在 3D 生物打印研究中首次实现。基于低温明胶-透明质酸 (Gel-HA) 的 3D 生物打印支架已被制造并通过扫描电子显微镜 (SEM)、光学显微镜图像、拉伸试验、溶胀度测定和孔隙率表征。然后,来自小鼠 C3H/An 的 L929 细胞已附着在低温凝胶-HA 支架上。对低温支架上的细胞附着、活力和增殖进行了 7 天的研究。结果表明,3D生物打印技术与低温工艺的结合为生物医学支架提供了新的方向。基于低温明胶-透明质酸 (Gel-HA) 的 3D 生物打印支架已被制造并通过扫描电子显微镜 (SEM)、光学显微镜图像、拉伸试验、溶胀度测定和孔隙率表征。然后,来自小鼠 C3H/An 的 L929 细胞已附着在低温凝胶-HA 支架上。对低温支架上的细胞附着、活力和增殖进行了 7 天的研究。结果表明,3D生物打印技术与低温工艺的结合为生物医学支架提供了新的方向。基于低温明胶-透明质酸 (Gel-HA) 的 3D 生物打印支架已被制造并通过扫描电子显微镜 (SEM)、光学显微镜图像、拉伸试验、溶胀度测定和孔隙率表征。然后,来自小鼠 C3H/An 的 L929 细胞已附着在低温凝胶-HA 支架上。对低温支架上的细胞附着、活力和增殖进行了 7 天的研究。结果表明,3D生物打印技术与低温工艺的结合为生物医学支架提供了新的方向。对低温支架上的细胞附着、活力和增殖进行了 7 天的研究。结果表明,3D生物打印技术与低温工艺的结合为生物医学支架提供了新的方向。对低温支架上的细胞附着、活力和增殖进行了 7 天的研究。结果表明,3D生物打印技术与低温工艺的结合为生物医学支架提供了新的方向。

更新日期:2020-10-04
down
wechat
bug