当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Limited Ice Formation and Efficient De‐Icing on Superhydrophobic Micro‐Structured Airfoils through Direct Laser Interference Patterning
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2020-10-05 , DOI: 10.1002/admi.202001231
Sabri Alamri 1 , Vittorio Vercillo 2 , Alfredo I. Aguilar‐Morales 1 , Frederic Schell 1 , Marc Wetterwald 3 , Andrés F. Lasagni 1, 4 , Elmar Bonaccurso 2 , Tim Kunze 1
Affiliation  

Forward facing aerodynamic surfaces such as rotors and wings are susceptible to ice build‐up when exposed to atmospheric icing conditions. If not removed, accumulated ice on aircraft surfaces affects aerodynamics or rotation balance, which can ultimately lead to increased fuel consumption, reduced operational performance and to potentially hazardous situations. Laser surface structuring is proposed as an alternative technology to coatings for achieving icephobic properties and support anti‐icing and de‐icing processes on aerodynamic surfaces. However, to authors’ knowledge, no study available in the literature reports on the icing behavior of microtextured curved aerodynamic profiles and the effect of the laser surface treatment on the electrothermal heating used for ice protection systems. In this work, direct laser interference patterning is employed to fabricate hierarchical micro‐ and nanostructures directly on a non‐planar titanium airfoil. The anti‐icing performance of the laser‐treated airfoil is tested in an icing wind tunnel under simulated atmospheric conditions. The results demonstrate a self‐limiting ice growth, a decrease in the deicing electro‐thermal power up to 80%, and up 60% lower heating power necessary to keep the surface free of ice than on the reference airfoil.

中文翻译:

通过直接激光干涉图样在超疏水微结构机翼上进行自限冰形成和高效除冰

当暴露于大气结冰条件下时,面向前的空气动力学表面(例如旋翼和机翼)容易结冰。如果不及时清除,飞机表面积聚的冰会影响空气动力学或旋转平衡,最终会导致燃油消耗增加,运行性能下降以及潜在的危险情况。提出将激光表面结构化作为涂层的替代技术,以实现憎冰性能并支持空气动力学表面的除冰和除冰过程。然而,据作者所知,文献中尚无关于微织造弯曲空气动力学轮廓的结冰行为以及激光表面处理对用于防冰系统的电热加热的影响的研究报告。在这项工作中 直接激光干涉图案化技术可用于在非平面钛翼型件上直接制造分层的微结构和纳米结构。在模拟大气条件下,在结冰风洞中测试了经过激光处理的机翼的防冰性能。结果表明,冰的自限性增长,除冰电热功率最多可降低80%,而保持表面无冰所需的加热功率则比参考机翼低60%。
更新日期:2020-11-21
down
wechat
bug