当前位置: X-MOL 学术Physiol. Plant › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoprotection and optimization of sucrose usage contribute to faster recovery of photosynthesis after water deficit at high temperatures in wheat
Physiologia Plantarum ( IF 5.4 ) Pub Date : 2020-10-26 , DOI: 10.1111/ppl.13227
Pedro M. P. Correia 1 , Anabela Bernardes Silva 1 , Thomas Roitsch 2, 3 , Elizabete Carmo‐Silva 4 , Jorge Marques Silva 1
Affiliation  

Plants are increasingly exposed to events of elevated temperature and water deficit, which threaten crop productivity. Understanding the ability to rapidly recover from abiotic stress, restoring carbon assimilation and biomass production, is important to unravel crop climate resilience. This study compared the photosynthetic performance of two Triticum aestivum L. cultivars, Sokoll and Paragon, adapted to the climate of Mexico and UK, respectively, exposed to one week water deficit and high temperatures, in isolation or combination. Measurements included photosynthetic assimilation rate, stomatal conductance, in vitro activities of Rubisco (EC 4.1.1.39) and invertase (INV, EC 3.2.1.26), antioxidant capacity and chlorophyll a fluorescence. In both genotypes, under elevated temperatures and water deficit (WD38°C), the photosynthetic limitations were mainly due to stomatal restrictions and to a decrease in the electron transport rate. Chlorophyll a fluorescence parameters clearly indicate differences between the two genotypes in the photoprotection when subjected to WD38°C and showed faster recovery of Paragon after stress relief. The activity of the cytosolic invertase (CytINV) under these stress conditions was strongly related to the fast photosynthesis recovery of Paragon. Taken together, the results suggest that optimal sucrose export/utilization and increased photoprotection of the electron transport machinery are important components to limit yield fluctuations due to water shortage and elevated temperatures.

中文翻译:

光保护和蔗糖使用的优化有助于小麦高温缺水后光合作用的更快恢复

植物越来越多地暴露在高温和缺水事件中,这威胁到作物生产力。了解从非生物胁迫中快速恢复、恢复碳同化和生物量生产的能力,对于解开作物气候适应力很重要。本研究比较了两种小麦品种 Sokoll 和 Paragon 的光合性能,它们分别适应了墨西哥和英国的气候,单独或组合暴露于一周的缺水和高温环境中。测量包括光合同化率、气孔导度、Rubisco (EC 4.1.1.39) 和转化酶 (INV, EC 3.2.1.26) 的体外活性、抗氧化能力和叶绿素 a 荧光。在两种基因型中,在高温和缺水 (WD38°C) 下,光合作用的限制主要是由于气孔限制和电子传输速率的降低。叶绿素 a 荧光参数清楚地表明,当经受 WD38°C 时,两种基因型在光保护方面存在差异,并显示出压力缓解后 Paragon 的恢复更快。在这些胁迫条件下,胞质转化酶 (CytINV) 的活性与 Paragon 的快速光合作用恢复密切相关。综上所述,结果表明,最佳的蔗糖出口/利用和电子传输机制的光保护增加是限制因缺水和温度升高导致产量波动的重要组成部分。叶绿素 a 荧光参数清楚地表明,当经受 WD38°C 时,两种基因型在光保护方面存在差异,并显示出压力缓解后 Paragon 的恢复更快。在这些胁迫条件下,胞质转化酶 (CytINV) 的活性与 Paragon 的快速光合作用恢复密切相关。综上所述,结果表明,最佳的蔗糖出口/利用和电子传输机制的光保护增加是限制因缺水和温度升高导致产量波动的重要组成部分。叶绿素 a 荧光参数清楚地表明,当经受 WD38°C 时,两种基因型在光保护方面存在差异,并显示出压力缓解后 Paragon 的恢复更快。在这些胁迫条件下,胞质转化酶 (CytINV) 的活性与 Paragon 的快速光合作用恢复密切相关。综上所述,结果表明,最佳的蔗糖输出/利用和电子传输机制的光保护增加是限制因缺水和温度升高导致产量波动的重要组成部分。在这些胁迫条件下,胞质转化酶 (CytINV) 的活性与 Paragon 的快速光合作用恢复密切相关。综上所述,结果表明,最佳的蔗糖出口/利用和电子传输机制的光保护增加是限制因缺水和温度升高导致产量波动的重要组成部分。在这些胁迫条件下,胞质转化酶 (CytINV) 的活性与 Paragon 的快速光合作用恢复密切相关。综上所述,结果表明,最佳的蔗糖出口/利用和电子传输机制的光保护增加是限制因缺水和温度升高导致产量波动的重要组成部分。
更新日期:2020-10-26
down
wechat
bug