当前位置: X-MOL 学术Permafr. Periglac. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada
Permafrost and Periglacial Processes ( IF 3.0 ) Pub Date : 2020-10-03 , DOI: 10.1002/ppp.2086
Madeleine C. Garibaldi 1 , Philip P. Bonnaventure 1 , Scott F. Lamoureux 2
Affiliation  

Ground surface and permafrost temperatures in the High Arctic are often considered homogeneous especially when viewed at the scale of climate and environmental models. However, this is generally incorrect due to highly variable, topographically redistributed snow cover, which generates a substantial degree of ground thermal heterogeneity. The objective of this study is to describe and spatially model the variability in the ground thermal regime within the Cape Bounty Arctic Watershed Observatory (CBAWO), Nunavut, Canada, using the TTOP model, for current conditions in addition to a series of future climate change scenarios. While observed air temperature was mostly uniform, annual mean ground surface and permafrost temperatures across the paired watersheds were estimated to range between −3.8 to −13.8°C and −3.9 to −14°C, respectively, similar to the −5 to −15°C magnitude and range identified from boreholes across the High Arctic. The spatial models showed higher ground surface temperatures in topographic hollows (slope bases and stream channels), and lower temperatures in areas of topographic prominence (hilltops and plateaus) following the spatial pattern of snow accumulation and redistribution. Under projected climate change, the models predicted areas with the coldest permafrost to have the largest magnitude of warming (about 9°C), while areas of warm permafrost became closer to 0°C (warming 4–7°C). This thermal heterogeneity may have implications for ground instability such as permafrost‐related mass movements, hydrological connectivity, biogeochemical cycling, and microbial activity, which influence water quality and contaminant mobility.

中文翻译:

利用TTOP模型了解北极地区高寒地区的多年冻土温度变化,加拿大努纳武特角海角

高北极地区的地表和多年冻土温度通常被认为是均匀的,尤其是从气候和环境模型的规模来看。但是,由于高度可变的地形重新分布的积雪,通常这是不正确的,积雪会产生很大程度的地面热非均质性。这项研究的目的是使用TTOP模型,针对加拿大当前状况以及一系列未来的气候变化,描述和空间建模加拿大努纳武特角海角邦蒂北极流域天文台(CBAWO)内的地热状况的变化。场景。尽管观测到的空气温度基本均匀,但估计成对流域的年平均地表温度和多年冻土温度分别介于-3.8至-13.8°C和-3.9至-14°C之间,类似于-5至-15°C的幅度和范围,从整个高北极地区的钻孔确定。空间模型显示,随着积雪和再分布的空间格局的变化,地形空洞(坡底和河道)的地表温度较高,而地形突出区域(山顶和高原)的温度较低。在预计的气候变化下,模型预测永久冻土最冷的地区变暖幅度最大(约9°C),而永久冻土的暖区接近0°C(变暖4-7°C)。这种热非均质性可能会影响地面的不稳定性,例如与永久冻土有关的质量运动,水文连通性,生物地球化学循环和微生物活动,这些都会影响水质和污染物的流动性。
更新日期:2020-10-03
down
wechat
bug