当前位置: X-MOL 学术Atmos. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of vertical microphysical characteristics of precipitation under the action of low-frequency acoustic waves
Atmospheric Research ( IF 4.5 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.atmosres.2020.105283
Yang Shi , Jiahua Wei , Qiong Li , Haijiao Yang , Zhen Qiao , Yan Ren , Sanchuan Ni , Julong He , Weiwen Shen , Shoukai Cao , Guangqian Wang

Abstract As a potentially effective technology for particle removal, acoustic agglomeration technology has been tested for airport defogging and weather modification. Small-scale experiments and simulation studies have shown that acoustic waves can accelerate agglomeration of droplets and aerosol particles, but this has not been confirmed by large-scale field experiments and observations. In this study, field experiments were conducted in a high-altitude and non-interference environment to investigate cloud and precipitation interference by low-frequency acoustic waves. Field tests were carried out in the source region of the Yellow River (SRYR) from July 21, 2019 to November 20, 2019. Macro- and micro- physical characteristics of cloud and precipitation in stratiform and convective–mixed precipitation systems were monitored by disdrometer, micro rain radar, and microwave radiometer. The results showed sensitivity of microphysical parameters of rain rate (R), radar reflectivity factor (Z), liquid water content (Lwc) and height of cloud base (Hc) to acoustic operation. Of these, values of R, Z, and Lwc became larger under the action of acoustic waves, and Hc values became lower with acoustic operation. Spectral parameters λ against μ, Z against R, and Lwc against R at different sampling altitudes and for different precipitation systems follow a quadratic function, power function, and linear function, respectively. The results of this study should be instructive for further efforts to investigate and develop atmospheric interference technology with low-frequency strong acoustic waves.

中文翻译:

低频声波作用下降水垂直微物理特性研究

摘要 作为一种潜在有效的颗粒去除技术,声团聚技术已经在机场除雾和人工影响天气方面进行了测试。小规模的实验和模拟研究表明,声波可以加速液滴和气溶胶粒子的团聚,但这并没有得到大规模的现场实验和观测的证实。本研究在高海拔、无干扰的环境中进行了野外实验,以研究低频声波对云和降水的干扰。2019年7月21日至2019年11月20日在黄河源区进行了实地测试。 层状和对流混合降水系统云和降水的宏观和微观物理特征, 微雨雷达和微波辐射计。结果表明降雨率(R)、雷达反射系数(Z)、液态水含量(Lwc)和云底高度(Hc)等微物理参数对声学操作的敏感性。其中,R、Z、Lwc 值在声波作用下变大,Hc 值在声波作用下变低。不同采样高度和不同降水系统的光谱参数 λ 对 μ、Z 对 R 和 Lwc 对 R 分别遵循二次函数、幂函数和线性函数。该研究结果对进一步研究和发展低频强声波大气干扰技术具有指导意义。结果表明降雨率(R)、雷达反射系数(Z)、液态水含量(Lwc)和云底高度(Hc)等微物理参数对声学操作的敏感性。其中,R、Z、Lwc 值在声波作用下变大,Hc 值在声波作用下变低。不同采样高度和不同降水系统的光谱参数 λ 对 μ、Z 对 R 和 Lwc 对 R 分别遵循二次函数、幂函数和线性函数。该研究结果对进一步研究和发展低频强声波大气干扰技术具有指导意义。结果表明降雨率(R)、雷达反射系数(Z)、液态水含量(Lwc)和云底高度(Hc)等微物理参数对声学操作的敏感性。其中,R、Z、Lwc 值在声波作用下变大,Hc 值在声波作用下变低。不同采样高度和不同降水系统的光谱参数 λ 对 μ、Z 对 R 和 Lwc 对 R 分别遵循二次函数、幂函数和线性函数。该研究结果对进一步研究和发展低频强声波大气干扰技术具有指导意义。声波作用下Lwc变大,声波作用下Hc值变低。不同采样高度和不同降水系统的光谱参数 λ 对 μ、Z 对 R 和 Lwc 对 R 分别遵循二次函数、幂函数和线性函数。该研究结果对进一步研究和发展低频强声波大气干扰技术具有指导意义。声波作用下Lwc变大,声波作用下Hc值变低。不同采样高度和不同降水系统的光谱参数 λ 对 μ、Z 对 R 和 Lwc 对 R 分别遵循二次函数、幂函数和线性函数。该研究结果对进一步研究和发展低频强声波大气干扰技术具有指导意义。
更新日期:2021-02-01
down
wechat
bug