当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface quality optimization of CFRP plates drilled with standard and step drill bits using TAGUCHI, TOPSIS and AHP method
Engineering Computations ( IF 1.5 ) Pub Date : 2020-09-30 , DOI: 10.1108/ec-04-2020-0202
Gökhan Sur , Ömer Erkan

Purpose

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the drill geometry and cutting parameters to improve the surface quality of CFRP composite material. In this study, CFRP plates were drilled with uncoated carbide drill bits with standard and step geometry. Thus, the effects of standard and step drill bits on surface quality have been examined comparatively. In addition, optimum output parameters were determined by Taguchi, ANOVA and multiple decision-making methods.

Design/methodology/approach

Drill bit point angles were selected as 90°, 110° and 130°. In cutting parameters, three different cutting speeds (25, 50 and 75 m/min) and three different feeds (0.1, 0.15 and 0.2 mm/rev) were determined. L18 orthogonal sequence was used with Taguchi experimental design. Three important output parameters affecting the surface quality are determined as thrust force, surface roughness and delamination factor. For each output parameter, the effects of drill geometry and cutting parameters were evaluated. Input parameters affecting output parameters were analyzed using the ANOVA method. Output parameters were estimated by creating regression equations. Weights were determined using the analytic hierarchy process (AHP) method, and multiple output parameters were optimized using technique for order preference by Similarity to An ideal solution (TOPSIS).

Findings

It has been determined from the experimental results that step drills generate smaller thrust forces than standard drills. However, it has been determined that it creates greater surface roughness and delamination factor. From the Taguchi analysis, the optimum input parameters for Fz step tool geometry, 90° point angle, 75 m/min cutting speed and 0.1 mm/rev feed. For Fd, are standard tool geometry, 90° point angle, 25 m/min cutting speed and 0.1 mm/rev feed and for Ra, are standard tool geometry, 130° point angle, 25 m/min cutting speed and 0.1 mm/rev feed. ANOVA analysis determined that the most important parameter on Fd is the tip angle, with 56.33%. The most important parameter on Ra and Fz was found to be 40.53% and 77.06% tool geometry, respectively. As a result of the optimization with multiple criteria decision-making methods, the test order that gave the best surface quality was found as 4–1-9–5-8–17-2–13-6–16-18–15-11–10-3–12-14. The results of the test number 4, which gives the best surface quality, namely, the thrust force is 91.86 N, the surface roughness is 0.75 µm and the delamination factor is 1.043. As a result of experiment number 14, which gave the worst surface quality, the thrust force was 149.88 N, the surface roughness was 3.03 µm and the delamination factor was 1.163.

Practical implications

Surface quality is an essential parameter in the drilling of CFRP plates. Cutting tool geometry comes first among the parameters affecting this. Therefore, different cutting tool geometries are preferred. A comparison of these cutting tools is discussed in detail. On the other hand, thrust force, delamination factor and surface roughness, which are the output parameters that determine the surface quality, have been optimized using the TOPSIS and AHP method. In this way, this situation, which seems complicated, is presented in a plain and understandable form.

Originality/value

In the experiments, cutting tools with different geometries are included. Comparatively, its effects on surface quality were examined. The hole damage mechanism affecting the surface quality is discussed in detail. The results were optimized by evaluating Taguchi, ANOVA, TOPSIS and AHP methods together.



中文翻译:

使用 TAGUCHI、TOPSIS 和 AHP 方法对标准钻头和阶梯钻头钻孔的 CFRP 板表面质量进行优化

目的

钻孔具有高表面质量的碳纤维增强塑料 (CFRP) 复合板对于装配操作非常重要。文章旨在优化钻头几何形状和切削参数,以提高CFRP复合材料的表面质量。在这项研究中,CFRP 板使用标准和阶梯几何形状的无涂层硬质合金钻头钻孔。因此,标准钻头和阶梯钻头对表面质量的影响进行了比较研究。此外,通过田口、方差分析和多种决策方法确定了最佳输出参数。

设计/方法/方法

钻头尖角选择为90°、110°和130°。在切削参数方面,确定了三种不同的切削速度(25、50 和 75 m/min)和三种不同的进给(0.1、0.15 和 0.2 mm/rev)。L18 正交序列用于田口实验设计。影响表面质量的三个重要输出参数被确定为推力、表面粗糙度和分层因子。对于每个输出参数,评估钻头几何形状和切削参数的影响。使用方差分析方法分析影响输出参数的输入参数。通过创建回归方程来估计输出参数。使用层次分析法 (AHP) 确定权重,并使用与理想解决方案相似性 (TOPSIS) 的顺序偏好技术优化多个输出参数。

发现

实验结果表明,阶梯钻产生的推力比标准钻更小。然而,已经确定它会产生更大的表面粗糙度和分层因素。根据田口分析,Fz 阶梯刀具几何形状、90° 刀尖角、75 m/min 切削速度和 0.1 mm/rev 进给的最佳输入参数。对于 Fd,是标准刀具几何形状,90° 刀尖角,25 m/min 切削速度和 0.1 mm/rev 进给;对于 Ra,是标准刀具几何形状,130° 刀尖角,25 m/min 切削速度和 0.1 mm/rev喂养。ANOVA 分析确定 Fd 上最重要的参数是尖端角,为 56.33%。发现 Ra 和 Fz 上最重要的参数分别是刀具几何形状的 40.53% 和 77.06%。作为多准则决策方法优化的结果,得出最佳表面质量的测试顺序为 4-1-9-5-8-17-2-13-6-16-18-15-11-10-3-12-14。测试编号 4 的结果,其表面质量最好,即推力为 91.86 N,表面粗糙度为 0.75 µm,分层因子为 1.043。作为表面质量最差的实验编号 14 的结果,推力为 149.88 N,表面粗糙度为 3.03 μm,分层因子为 1.163。

实际影响

表面质量是 CFRP 板钻孔的重要参数。在影响这一点的参数中,刀具几何形状是第一位的。因此,优选不同的切削刀具几何形状。详细讨论了这些切削工具的比较。另一方面,推力、分层因子和表面粗糙度是决定表面质量的输出参数,已使用 TOPSIS 和 AHP 方法进行了优化。就这样,这种看似复杂的情况,却以一种通俗易懂的形式呈现出来。

原创性/价值

在实验中,包括具有不同几何形状的切削刀具。比较地,检查了它对表面质量的影响。详细讨论了影响表面质量的孔损伤机制。通过结合评估田口、方差分析、TOPSIS 和 AHP 方法来优化结果。

更新日期:2020-09-30
down
wechat
bug