当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Band gap tuning of p-type Al-doped TiO2 thin films for gas sensing applications
Thin Solid Films ( IF 2.0 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.tsf.2020.138382
Mohammad Nurul Islam , Jiban Podder , Khandker Saadat Hossain , Suresh Sagadevan

Abstract Transparent conducting titanium dioxide (TiO2) thin films were synthesized by a spray pyrolysis technique. In this work, the effect of Al doping on the structural, morphological, topographical, optical, and electronic properties of TiO2 thin film samples was studied in detail. The deposited film shows 66 nm to 82 nm nanostructured crystallite size. The cell parameters are found in good agreement with the experimental and theoretical calculations. The pore diameters are found to be between 6 nm and 9 nm as revealed by the field emission scanning electron microscopy images. The energy dispersive X-ray analysis, spectra show that all the samples are in stoichiometric conditions. Atomic force microscope images show that the surface roughness varies from 34.72 nm to 89.83 nm. The bandgap tuning has been observed both experimentally and theoretically. The study of optical properties shows that the absorption limit of the Al-doped TiO2 sample is shifted towards the lower energy region compared with the un-doped sample. The electrical band structure energy (3.11 to 3.64 eV) values are much closer to those of the optical band structure energy (3.18 to 3.01 eV for indirect and 3.70 to 3.49 eV for direct). The charge density map ensures that the covalent bond is present in the as-deposited sample. A combined analysis of the structural, morphological, topographical, optical, and electronic properties of the compound suggests that Ti1-x AlxO2 is a potential candidate for gas sensing and photovoltaic device.

中文翻译:

用于气体传感应用的 p 型掺铝 TiO2 薄膜的带隙调谐

摘要 采用喷雾热解技术合成了透明导电二氧化钛(TiO2)薄膜。在这项工作中,详细研究了 Al 掺杂对 TiO2 薄膜样品的结构、形态、形貌、光学和电子特性的影响。沉积的薄膜显示出 66 nm 至 82 nm 的纳米结构微晶尺寸。发现电池参数与实验和理论计算非常一致。如场发射扫描电子显微镜图像所揭示的,发现孔径在6nm和9nm之间。能量色散X射线分析,光谱表明所有样品都处于化学计量条件。原子力显微镜图像显示表面粗糙度从 34.72 nm 到 89.83 nm 不等。带隙调谐已经在实验和理论上观察到。光学性质的研究表明,与未掺杂的样品相比,Al 掺杂的 TiO2 样品的吸收极限向较低能量区域移动。电能带结构能量(3.11 至 3.64 eV)值更接近于光能带结构能量(间接为 3.18 至 3.01 eV,直接为 3.70 至 3.49 eV)。电荷密度图确保共价键存在于沉积样品中。对该化合物的结构、形态、形貌、光学和电子特性的综合分析表明,Ti1-x AlxO2 是气体传感和光伏器件的潜在候选材料。光学性质的研究表明,与未掺杂的样品相比,Al 掺杂的 TiO2 样品的吸收极限向较低能量区域移动。电能带结构能量(3.11 至 3.64 eV)值更接近于光能带结构能量(间接为 3.18 至 3.01 eV,直接为 3.70 至 3.49 eV)。电荷密度图确保共价键存在于沉积样品中。对该化合物的结构、形态、形貌、光学和电子特性的综合分析表明,Ti1-x AlxO2 是气体传感和光伏器件的潜在候选物。光学性质的研究表明,与未掺杂的样品相比,Al 掺杂的 TiO2 样品的吸收极限向较低能量区域移动。电能带结构能量(3.11 至 3.64 eV)值更接近于光能带结构能量(间接为 3.18 至 3.01 eV,直接为 3.70 至 3.49 eV)。电荷密度图确保共价键存在于沉积样品中。对该化合物的结构、形态、形貌、光学和电子特性的综合分析表明,Ti1-x AlxO2 是气体传感和光伏器件的潜在候选材料。01 eV(间接)和 3.70 至 3.49 eV(直接)。电荷密度图确保共价键存在于沉积样品中。对该化合物的结构、形态、形貌、光学和电子特性的综合分析表明,Ti1-x AlxO2 是气体传感和光伏器件的潜在候选物。01 eV(间接)和 3.70 至 3.49 eV(直接)。电荷密度图确保共价键存在于沉积样品中。对该化合物的结构、形态、形貌、光学和电子特性的综合分析表明,Ti1-x AlxO2 是气体传感和光伏器件的潜在候选材料。
更新日期:2020-11-01
down
wechat
bug