当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of walking rate for subsea pipelines neighbouring the pipeline end terminations/pipeline end manifolds
Ocean Engineering ( IF 4.6 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.oceaneng.2020.108087
Zhaohui Hong , Zefeng Zhou , Wenbin Liu , Yue Yan , Dengfeng Fu , Shuwang Yan

Abstract Pipeline walking is a global axial movement caused by the asymmetric distribution of axial force along the pipeline during the repetitive operational loading cycle. The pipeline walking rate, increasing with the loading cycles, may lead to high stress thereby the failure of connectors at PLETs or PLEMs. Current research studies and design guidelines focused on free-end pipelines and neglected changes in the pipeline walking rate and axial resistance with effects of pipeline end structures. However, in practice, several pipelines are adjacent to PLETs or PLEMs, which potentially affect the pipeline walking and expansion behaviour thereby walking rate and axial displacement. This study analyses the walking phenomenon considering the effects of mobilisation of the resistance at the pipeline end structures and develops new analytical solutions for the present problem, in terms of different walking mechanism, maximum axial resistance Pmax, and positions of pipeline end structures. The analytical solutions are validated through numerical simulation results. The case study results indicate the axial resistance generated by PLETs/PLEMs can effectively mitigate pipeline walking rate compared with free-end pipeline walking. In particular, the influence of PLETs/PLEMs is investigated, highlighting the sensitivity of the pipeline walking to the end boundary conditions covering different design scenarios.

中文翻译:

邻近管道末端终端/管道末端歧管的海底管道的行走速率分析

摘要 管道行走是在重复的操作加载循环中,轴向力沿管道不对称分布而引起的全局轴向运动。随着加载周期的增加,管道行走速度可能会导致高应力,从而导致 PLET 或 PLEM 处的连接器失效。当前的研究和设计指南侧重于自由端管道,而忽略了管道行走速率和轴向阻力随管道端部结构影响的变化。然而,在实践中,几条管道与 PLET 或 PLEM 相邻,这可能会影响管道的行走和膨胀行为,从而影响行走速率和轴向位移。本研究考虑了管道端部结构阻力移动的影响,分析了行走现象,并根据不同的行走机制、最大轴向阻力 Pmax 和管道端部结构的位置,为当前问题开发了新的解析解。通过数值模拟结果验证了解析解。案例研究结果表明,与自由端管道行走相比,PLETs/PLEMs 产生的轴向阻力可以有效降低管道行走速度。特别是,研究了 PLETs/PLEMs 的影响,突出了管道走向覆盖不同设计场景的末端边界条件的敏感性。和管道端部结构的位置。通过数值模拟结果验证了解析解。案例研究结果表明,与自由端管道行走相比,PLETs/PLEMs 产生的轴向阻力可以有效降低管道行走速度。特别是,研究了 PLETs/PLEMs 的影响,突出了管道走向覆盖不同设计场景的末端边界条件的敏感性。和管道端部结构的位置。通过数值模拟结果验证了解析解。案例研究结果表明,与自由端管道行走相比,PLETs/PLEMs 产生的轴向阻力可以有效降低管道行走速度。特别是,研究了 PLETs/PLEMs 的影响,突出了管道走向覆盖不同设计场景的末端边界条件的敏感性。
更新日期:2020-12-01
down
wechat
bug