当前位置: X-MOL 学术J. Glaciol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of snowfall estimated by in situ and ground-based remote-sensing observations at Terra Nova Bay, Victoria Land, Antarctica
Journal of Glaciology ( IF 2.8 ) Pub Date : 2020-10-01 , DOI: 10.1017/jog.2020.70
Claudio Scarchilli , Virginia Ciardini , Paolo Grigioni , Antonio Iaccarino , Lorenzo De Silvestri , Marco Proposito , Stefano Dolci , Giuseppe Camporeale , Riccardo Schioppo , Adriano Antonelli , Luca Baldini , Nicoletta Roberto , Stefania Argentini , Alessandro Bracci , Massimo Frezzotti

Knowledge of the precipitation contribution to the Antarctic surface mass balance is essential for defining the ice-sheet contribution to sea-level rise. Observations of precipitation are sparse over Antarctica, due to harsh environmental conditions. Precipitation during the summer months (November–December–January) on four expeditions, 2015–16, 2016–17, 2017–18 and 2018–19, in the Terra Nova Bay area, were monitored using a vertically pointing radar, disdrometer, snow gauge, radiosounding and an automatic weather station installed at the Italian Mario Zucchelli Station. The relationship between radar reflectivity and precipitation rate at the site can be estimated using these instruments jointly. The error in calculated precipitation is up to 40%, mostly dependent on reflectivity variability and disdrometer inability to define the real particle fall velocity. Mean derived summer precipitation is ~55 mm water equivalent but with a large variability. During collocated measurements in 2018–19, corrected snow gauge amounts agree with those derived from the relationship, within the estimated errors. European Centre for the Medium-Range Weather Forecasts (ECMWF) and the Antarctic Mesoscale Prediction System (AMPS) analysis and operational outputs are able to forecast the precipitation timing but do not adequately reproduce quantities during the most intense events, with overestimation for ECMWF and underestimation for AMPS.

中文翻译:

在南极洲维多利亚地的特拉诺瓦湾通过现场和地面遥感观测估计的降雪特征

了解降水对南极表面质量平衡的贡献对于确定冰盖对海平面上升的贡献至关重要。由于恶劣的环境条件,南极洲的降水观测很少。2015-16 年、2016-17 年、2017-18 年和 2018-19 年四次探险在夏季(11 月至 12 月至 1 月)期间在特拉诺瓦湾地区使用垂直指向雷达、测距仪、雪安装在意大利马里奥祖凯利站的仪表、无线电探测和自动气象站。可以联合使用这些仪器估计该站点的雷达反射率和降水率之间的关系。计算降水量的误差高达40%,主要依赖于反射率的可变性和散射仪无法定义真实的粒子下落速度。夏季平均降水量约为 55 毫米水当量,但变化很大。在 2018-19 年的并置测量期间,校正的雪量计数量与从该关系得出的量一致,在估计的误差范围内。欧洲中期天气预报中心 (ECMWF) 和南极中尺度预报系统 (AMPS) 分析和业务输出能够预测降水时间,但在最强烈的事件期间不能充分再现降水量,对 ECMWF 的估计过高和低估对于安培。在估计误差范围内,修正后的积雪量与从关系得出的量一致。欧洲中期天气预报中心 (ECMWF) 和南极中尺度预报系统 (AMPS) 分析和业务输出能够预测降水时间,但在最强烈的事件期间不能充分再现降水量,对 ECMWF 的估计过高和低估对于安培。在估计误差范围内,修正后的积雪量与从关系得出的量一致。欧洲中期天气预报中心 (ECMWF) 和南极中尺度预报系统 (AMPS) 分析和业务输出能够预测降水时间,但在最强烈的事件期间不能充分再现降水量,对 ECMWF 的估计过高和低估对于安培。
更新日期:2020-10-01
down
wechat
bug