当前位置: X-MOL 学术Soils Found. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mapping of liquefaction risk on road network based on relationship between liquefaction potential and liquefaction-induced road subsidence
Soils and Foundations ( IF 3.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.sandf.2020.07.007
Kazuhiro Kajihara , Hiroki Okuda , Takashi Kiyota , Kazuo Konagai

Abstract On March 11, 2011, a large earthquake of Mw 9.0 shook north-eastern Japan and caused severe liquefaction-induced damage over a wide area of reclaimed lands along the coast of Tokyo Bay. Although regional mapping of the liquefaction hazard had been performed in many automounts bodies in Japan, it seems that the maps were not effectively used on all fronts of disaster-prevention management, because the maps only provide liquefaction susceptibilities and little quantitative information on how seriously the ground might deform in a scenario earthquake, which is absolutely necessary information for discussing what-if scenarios. Konagai et al. (2013) conducted air-borne LiDAR surveys to obtain liquefaction-induced ground deformations over the north-eastern stretch of the Tokyo Bay shore area, including Urayasu City, where approximately 85% of the city area was heavily liquefied. Meanwhile, the authors have developed a geotechnical database for liquefaction risk assessments, compiling all the available borehole logs and soil testing data provided by Urayasu City (2012). Given the potential risk of re-liquefaction in a future scenario earthquake, it is an overriding priority to develop a knowledge-sharing liquefaction hazard map reflecting precise records from the past, such as liquefaction-induced ground subsidence and liquefaction-related damage. This paper attempts to assess the liquefaction-induced damage risk on road network, examining the relationship between the liquefaction potential index and the actual ground subsidence. For this purpose, firstly, the spatial distribution of the liquefaction potential (PL) was estimated over Urayasu City based on the above-mentioned geotechnical database developed by the authors. Secondly, the spatial distribution of the PL values and the actual liquefaction-induced road subsidence confirmed through air-born LiDAR surveys were compared to develop an empirical rule for estimating the potential road subsidence in a scenario earthquake. This empirical rule was found to describe the actual damage to roads and manholes in a satisfactory manner. Therefore, it is expected that a risk map, developed on the basis of this empirical rule, will not only help to assess liquefaction-induced damage, but also to design countermeasures against the what-if scenarios of liquefaction.

中文翻译:

基于液化潜力与液化致道路沉降关系的路网液化风险图

摘要 2011 年 3 月 11 日,一场 9.0 级的大地震震动了日本东北部,并在东京湾沿岸的大面积填海土地上造成了严重的液化破坏。尽管日本的许多汽车机构都对液化危害进行了区域测绘,但这些地图似乎并未有效地用于防灾管理的各个方面,因为这些地图仅提供了液化的敏感性,而几乎没有关于液化危害严重程度的定量信息。地面可能会在情景地震中变形,这是讨论假设情景绝对必要的信息。小奈等人。(2013) 进行了机载 LiDAR 调查,以获取东京湾沿岸地区东北部包括浦安市的液化引起的地面变形,大约 85% 的城市区域被严重液化。同时,作者开发了一个用于液化风险评估的岩土工程数据库,汇编了浦安市 (2012) 提供的所有可用钻孔日志和土壤测试数据。考虑到未来情景地震中再液化的潜在风险,开发一个知识共享的液化危险地图,反映过去的精确记录,如液化引起的地面沉降和液化相关的破坏,是压倒一切的优先事项。本文试图评估液化引起的路网破坏风险,考察液化潜力指数与实际地面沉降之间的关系。为此,首先,根据作者开发的上述岩土数据库,估计了浦安市的液化潜力 (PL) 的空间分布。其次,将 PL 值的空间分布与通过机载 LiDAR 调查确认的实际液化引起的道路沉降进行比较,以制定经验规则,用于估计情景地震中的潜在道路沉降。发现该经验规则以令人满意的方式描述了对道路和检修孔的实际损坏。因此,预计基于该经验规则开发的风险图不仅有助于评估液化引起的损害,还有助于设计针对液化假设情景的对策。PL 值的空间分布与通过机载 LiDAR 调查确认的实际液化引起的道路沉降进行了比较,以制定经验规则,用于估计情景地震中的潜在道路沉降。发现该经验规则以令人满意的方式描述了对道路和检修孔的实际损坏。因此,预计基于该经验规则开发的风险图不仅有助于评估液化引起的损害,还有助于设计针对液化假设情景的对策。PL 值的空间分布与通过机载 LiDAR 调查确认的实际液化引起的道路沉降进行了比较,以制定经验规则,用于估计情景地震中的潜在道路沉降。发现该经验规则以令人满意的方式描述了对道路和检修孔的实际损坏。因此,预计基于该经验规则开发的风险图不仅有助于评估液化引起的损害,还有助于设计针对液化假设情景的对策。发现该经验规则以令人满意的方式描述了对道路和检修孔的实际损坏。因此,预计基于该经验规则开发的风险图不仅有助于评估液化引起的损害,还有助于设计针对液化假设情景的对策。发现该经验规则以令人满意的方式描述了对道路和检修孔的实际损坏。因此,预计基于该经验规则开发的风险图不仅有助于评估液化引起的损害,还有助于设计针对液化假设情景的对策。
更新日期:2020-10-01
down
wechat
bug