当前位置: X-MOL 学术Ore Geol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mineralogy, fluid inclusions and carbon isotopes of the Kaman iron deposits, Central Anatolia, Turkey: Implication for ore genesis and hydrothermal evolution
Ore Geology Reviews ( IF 3.3 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.oregeorev.2020.103808
Ayşe Orhan

Abstract The Kaman iron deposits are located in Central Anatolia and are hosted by the Triassic Bolcadag Marble and Upper Cretaceous Celebi granitoid. Magnetite mineralization manifests as rhythmic banded and irregular lenses, which can be massive or disseminated within calcic marble and skarn zones. Six main paragenetic stages of skarn formation and ore deposition have been identified: (1) Na-(Ca) alterations composed of plagioclase (An4–31), and actinolite; (2) a prograde stage representing oxidized mineralogy dominated by diopside (Di62–98Joh0–4), grossular–andradite (Grs15–84Alm4–8Sps1–4) and magnetite; (3) a retrograde stage consisting of epidote (Ep51–62Cli38–49), magnetite, calcite, quartz, and less-abundant sulfides and chlorite; (4) a quartz-calcite-pyrite stage containing pyrite, quartz, calcite, and chlorite; and (5, 6) quartz-carbonate and supergene stages characterized by quartz, calcite, hematite, and chalcedony, goethite. Fluid inclusion and carbon isotope studies have shown that the prograde stage formed from moderate–high-salinity (7.1 to >70 wt.% NaCl eq.) and high-temperature (339 to >600 °C) fluids. Liquid and vapor-rich inclusions in an early garnet were homogenized in the liquid and vapor phases in a similar temperature range (513 and 529 °C). The δ18O and δ13C of calcites that accompany rhythmic banded magnetite ranged from 22.82 to 23.50‰ and -4.68 to -5.31‰, respectively. The retrograde stage was formed from low–high-salinity (2.9 to 45.4 wt. % NaCl eq.) and low–high-temperature (167 to 459 °C) fluids. The δ18O and δ13C of skarn calcites ranged from 4.34 to 15.86‰ and -3.57 to 0.23‰, respectively. The quartz-calcite-pyrite stage was formed from low-salinity (3.1–7.5 wt.% NaCl eq.) and temperature (171–392 °C) fluids. The δ18O and δ13C values were -2.38‰ and 2.43‰, respectively. The quartz-carbonate stage formed from low-salinity (3.6 to 5.7 wt.% NaCl eq.) and temperature (129 to 169 °C). In all phases, the eutectic and clathrate melting temperatures ranged from -59.5 to -52.2 °C and +4.4 to +12.0 °C, respectively. This indicates that the solutions contain H2O–NaCl–CaCl2–(±MgCl2)–CO2. These fluid inclusion data suggest that fluid boiling occurred under pressures between ∼60 and 70 MPa based on hydrostatic consideration during the prograde stage. The main magnetite deposition occurred following boiling, with rising salinity and temperature magmatic–hydrothermal fluids and in the pressure range of ∼15 to 50 MPa. Depletion in δ13C was attributed to high-temperature fluid infiltration and indicates an open-system volatilization process. It is suggested that the retrograde stage had developed in two episodes, with the carbofracturing effect triggered by CO2. The carbon isotope data of calcites indicate the mixing of low-temperature metasomatic and meteoric water in later stages. The mineralogy, microthermometry, and carbon isotope results reveal that Kaman iron deposits were developed by a combination of processes such as contact infiltration metasomatism, fluid–rock interaction, cooling, and fluid mixing as a result of decreasing pressure.

中文翻译:

土耳其安纳托利亚中部卡曼铁矿床的矿物学、流体包裹体和碳同位素:对矿石成因和热液演化的影响

摘要 Kaman 铁矿床位于安纳托利亚中部,赋存于三叠纪 Bolcadag Marble 和上白垩统 Celebi 花岗岩中。磁铁矿矿化表现为有节奏的带状和不规则透镜,可以是块状的,也可以是散布在钙质大理石和矽卡岩带内。已确定矽卡岩形成和矿石沉积的六个主要共生阶段:(1) 由斜长石 (An4-31) 和阳起石组成的 Na-(Ca) 蚀变;(2)代表以透辉石(Di62-98Joh0-4)、绿柱石(Grs15-84Alm4-8Sps1-4)和磁铁矿为主的氧化矿物学的前进阶段;(3) 由绿帘石(Ep51-62Cli38-49)、磁铁矿、方解石、石英以及较少量的硫化物和绿泥石组成的逆行阶段;(4)石英-方解石-黄铁矿阶段,含有黄铁矿、石英、方解石和绿泥石;和 (5, 6) 以石英、方解石、赤铁矿和玉髓、针铁矿为特征的石英-碳酸盐岩和表生阶段。流体包裹体和碳同位素研究表明,顺流阶段由中高盐度(7.1 至 >70 wt.% NaCl 当量)和高温(339 至 >600 °C)流体形成。早期石榴石中富含液体和蒸汽的包裹体在相似的温度范围内(513 和 529 °C)在液相和气相中均质化。伴随有节奏带状磁铁矿的方解石的δ18O和δ13C分别为22.82~23.50‰和-4.68~-5.31‰。逆行阶段由低-高盐度(2.9 至 45.4 wt.% NaCl eq.)和低温-高温(167 至 459 °C)流体形成。矽卡岩方解石的δ18O和δ13C分别为4.34~15.86‰和-3.57~0.23‰。石英-方解石-黄铁矿阶段由低盐度(3.1-7.5 wt.% NaCl eq.)和温度(171-392°C)流体形成。δ18O和δ13C值分别为-2.38‰和2.43‰。石英-碳酸盐阶段由低盐度(3.6 至 5.7 wt.% NaCl eq.)和温度(129 至 169 °C)形成。在所有相中,共晶和包合物的熔化温度范围分别为 -59.5 至 -52.2 °C 和 +4.4 至 +12.0 °C。这表明溶液含有 H2O-NaCl-CaCl2-(±MgCl2)-CO2。这些流体包裹体数据表明,在推进阶段,基于流体静力学考虑,流体沸腾发生在约 60 至 70 MPa 的压力下。主要的磁铁矿沉积发生在沸腾之后,随着矿化度和温度升高,岩浆-热液流体的压力范围约为 15 至 50 兆帕。δ13​​C 的消耗归因于高温流体的渗透,表明是一个开放系统的挥发过程。推测逆行阶段分两期发展,CO2 引发碳化压裂效应。方解石的碳同位素数据表明后期低温交代水和大气水混合。矿物学、显微测温和碳同位素结果表明,卡曼铁矿床是通过接触渗透交代、流体-岩石相互作用、冷却和压力降低导致的流体混合等过程的组合开发的。方解石的碳同位素数据表明后期低温交代水和大气水混合。矿物学、显微测温和碳同位素结果表明,卡曼铁矿床是通过接触渗透交代、流体-岩石相互作用、冷却和压力降低导致的流体混合等过程的组合开发的。方解石的碳同位素数据表明后期低温交代水和大气水混合。矿物学、显微测温和碳同位素结果表明,卡曼铁矿床是通过接触渗透交代、流体-岩石相互作用、冷却和压力降低导致的流体混合等过程的组合开发的。
更新日期:2020-12-01
down
wechat
bug