当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
Fitting multivariate Erlang mixtures to data: A roughness penalty approach
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.cam.2020.113216
Wenyong Gui; Rongtan Huang; X. Sheldon Lin

The class of multivariate Erlang mixtures with common scale parameter has many desirable properties and has widely been used in insurance loss modeling. The parameters of a multivariate Erlang mixture are normally estimated using an expectation–maximization (EM) algorithm as shown in Lee and Lin (2012) and Verbelen et al. (2016). However, when fitting the mixture to data of high dimension, the fitted density surface is often not smooth (with deep peaks and valleys) and the tail fitting may also be rather unsatisfactory. In this paper, we propose a generalized expectation conditional maximization (GECM) algorithm that maximizes a penalized likelihood with a proposed roughness penalty. The roughness penalty is based on integrated squared second derivative of the density function of aggregate data, which is used in functional data analysis. We illustrate the performance of the proposed method through some numerical experiments and real data applications.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
浙江大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
李霄鹏
廖矿标
试剂库存
down
wechat
bug