当前位置: X-MOL 学术Comp. Part. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis of flyer plate experiments in granite via the combined finite–discrete element method
Computational Particle Mechanics ( IF 2.8 ) Pub Date : 2019-11-20 , DOI: 10.1007/s40571-019-00300-w
Viet Chau , Esteban Rougier , Zhou Lei , Earl E. Knight , Ke Gao , Abigail Hunter , Gowri Srinivasan , Hari Viswanathan

In this study, the combined finite–discrete element method (FDEM), which merges the finite element-based analysis of continua with discrete element-based transient dynamics, contact detection, and contact interaction solutions, is used to simulate the response of a flyer plate impact experiment in a Westerly granite sample that contains a randomized set of cracks. FDEM has demonstrated to be a strongly improved physical model as it can accurately reproduce the velocity interferometer system for any reflector plot and capture the spall region and spall strength obtained from flyer plate experiments in granite. The number and the distributions of preexisting fractures have also been studied to get better understanding of the effect of structural cracks on the mechanical behavior and the failure path of Westerly granite under high strain rate impact. These FDEM capabilities, in the context of rock mechanics, are very important for two main reasons. First, the FDEM can be further applied to many complex large-scale problems such as planetary impact, rock blasting, seismic wave propagation, characterization of material failure around explosive crater formations, and detection of hydrocarbon flow in petroleum industry. Second, it can be used to validate high strain rate impact experiments and essentially, via virtual experimentation, replace these high-cost experiments by very cost- and time-effective simulations.



中文翻译:

花岗岩中传单板实验的有限离散组合数值分析

在这项研究中,结合了基于离散元的连续体分析和基于离散元的瞬态动力学,接触检测和接触相互作用解决方案的有限元-离散元组合方法(FDEM),来模拟飞行器的响应韦斯特里花岗岩样品中的板撞击实验,其中包含一组随机裂纹。FDEM已被证明是一个大大改进的物理模型,因为它可以针对任何反射器图准确地再现速度干涉仪系统,并捕获从花岗岩中的传单板实验获得的剥落区域和剥落强度。还研究了已有裂缝的数量和分布,以更好地了解结构裂缝对高应变率冲击下Westerly花岗岩的力学行为和破坏路径的影响。在岩石力学方面,这些FDEM功能非常重要,原因有两个。首先,FDEM可以进一步应用于许多复杂的大规模问题,例如行星撞击,岩石爆破,地震波传播,爆炸性火山口地层周围材料破坏的表征以及石油工业中烃流的检测。其次,它可以用于验证高应变率冲击实验,并且基本上可以通过虚拟实验,通过非常经济高效的模拟来代替这些高成本实验。爆炸性火山口周围物质破坏的特征分析,以及石油工业中碳氢化合物流量的检测。其次,它可以用于验证高应变率冲击实验,并且基本上可以通过虚拟实验,通过非常经济高效的模拟来代替这些高成本实验。爆炸性火山口周围物质破坏的特征分析,以及石油工业中碳氢化合物流量的检测。其次,它可以用于验证高应变率冲击实验,并且基本上可以通过虚拟实验,通过非常经济高效的模拟来代替这些高成本实验。

更新日期:2019-11-20
down
wechat
bug