当前位置: X-MOL 学术Comp. Part. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid–structure interaction of flexible submerged vegetation stems and kinetic turbine blades
Computational Particle Mechanics ( IF 2.8 ) Pub Date : 2019-12-13 , DOI: 10.1007/s40571-019-00304-6
Mingyang Wang , Eldad J. Avital , Xin Bai , Chunning Ji , Dong Xu , John J. R. Williams , Antonio Munjiza

A fluid–structure interaction (FSI) methodology is presented for simulating elastic bodies embedded and/or encapsulating viscous incompressible fluid. The fluid solver is based on finite volume and the large eddy simulation approach to account for turbulent flow. The structural dynamic solver is based on the combined finite element method–discrete element method (FEM-DEM). The two solvers are tied up using an immersed boundary method (IBM) iterative algorithm to improve information transfer between the two solvers. The FSI solver is applied to submerged vegetation stems and blades of small-scale horizontal axis kinetic turbines. Both bodies are slender and of cylinder-like shape. While the stem mostly experiences a dominant drag force, the blade experiences a dominant lift force. Following verification cases of a single-stem deformation and a spinning Magnus blade in laminar flows, vegetation flexible stems and flexible rotor blades are analysed, while they are embedded in turbulent flow. It is shown that the single stem’s flexibility has higher effect on the flow as compared to the rigid stem than when in a dense vegetation patch. Making a marine kinetic turbine rotor flexible has the potential of significantly reducing the power production due to undesired twisting and bending of the blades. These studies point to the importance of FSI in flow problems where there is a noticeable deflection of a cylinder-shaped body and the capability of coupling FEM-DEM with flow solver through IBM.



中文翻译:

柔性淹没植物茎与动力涡轮叶片的流固耦合

提出了一种流体-结构相互作用(FSI)方法,用于模拟嵌入和/或封装粘性不可压缩流体的弹性体。流体求解器基于有限体积和大涡模拟方法来解决湍流问题。结构动力求解器基于有限元-离散元方法(FEM-DEM)的组合。使用沉浸边界方法(IBM)迭代算法将两个求解器捆绑在一起,以改善两个求解器之间的信息传递。FSI求解器适用于小型水平轴动压式涡轮机的淹没植被茎和叶片。两个身体都很细长,呈圆柱状。杆主要承受主要的阻力,而叶片则承受主要的升力。在验证了单茎变形和层流中旋转的马格努斯叶片的验证案例之后,分析了植被柔性茎和柔性转子叶片,并将它们嵌入湍流中。结果表明,与刚性茎相比,单个茎的柔韧性对流动的影响要强于在茂密的植被中。由于不希望的叶片扭曲和弯曲,使船舶动力涡轮机转子具有挠性具有潜在地显着降低功率产生的潜力。这些研究指出了FSI在流动问题中的重要性,在流动问题中,圆柱体有明显的变形,并具有通过IBM将FEM-DEM与流动求解器耦合的能力。而它们被嵌入湍流中。结果表明,与刚性茎相比,单个茎的柔韧性对流动的影响要强于在茂密的植被中。由于不希望的叶片扭曲和弯曲,使船舶动力涡轮机转子具有挠性具有潜在地显着降低功率产生的潜力。这些研究指出了FSI在流动问题中的重要性,在流动问题中,圆柱体有明显的变形,并具有通过IBM将FEM-DEM与流动求解器耦合的能力。而它们被嵌入湍流中。结果表明,与刚性茎相比,单个茎的柔韧性对流动的影响要强于在茂密的植被中。由于不希望的叶片扭曲和弯曲,使船舶动力涡轮机转子具有挠性具有潜在地显着降低功率产生的潜力。这些研究指出了FSI在流动问题中的重要性,在流动问题中,圆柱体有明显的变形,并具有通过IBM将FEM-DEM与流动求解器耦合的能力。由于不希望的叶片扭曲和弯曲,使船舶动力涡轮机转子具有挠性具有潜在地显着降低功率产生的潜力。这些研究指出了FSI在流动问题中的重要性,在流动问题中,圆柱体有明显的变形,并具有通过IBM将FEM-DEM与流动求解器耦合的能力。由于不希望的叶片扭曲和弯曲,使船舶动力涡轮机转子具有挠性具有潜在地显着降低功率产生的潜力。这些研究指出了FSI在流动问题中的重要性,在流动问题中,圆柱体有明显的变形,并具有通过IBM将FEM-DEM与流动求解器耦合的能力。

更新日期:2019-12-13
down
wechat
bug