当前位置: X-MOL 学术Phys. Plasmas › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on the main characteristics of dynamic hohlraum formation at the Julong-1 facility
Physics of Plasmas ( IF 2.0 ) Pub Date : 2020-09-01 , DOI: 10.1063/5.0007416
Fan Ye 1 , Delong Xiao 2 , Yi Qin 1 , Zhanchang Huang 1 , Ning Ding 2 , Jun Yang 1 , Jian Lu 1 , Jiamin Ning 1 , Shijian Meng 1 , Xiaosong Yan 1 , Shuqing Jiang 1 , Ruihua Yang 1 , Xia Wen 1 , Jianlun Yang 1 , Zeping Xu 1 , Rongkun Xu 1 , Zhenghong Li 1
Affiliation  

Z-pinch dynamic hohlraum experiments have been carried out at the Julong-1 facility by imploding a nested tungsten wire array, which is configured with 20/10 mm diameter and 168/84 wires of 6.0 μm in diameter for the outer/inner array, onto a 10 mg/cc C15H20O6 foam converter with a radius of 2.3 mm. Detailed processes of shock formation, propagation, and radiation transfer of dynamic hohlraum were experimentally observed using an on-axis x-ray imaging system with simultaneous dual spectral channels. When the wire array plasma impacts onto the foam converter, thermalization of kinetic energy at the interaction zone generates a shock that propagates inward. The energy dissipated by imploding plasmas increases gradually, resulting in the strengthening of shock wave and finally the formation of the main radiating shock. During the propagating period of radiating shock, thermal radiation gradually transfers into the inner region, and a uniform hohlraum is produced when the main shock arrives at a radius of 0.8 mm in the experiments at the Julong-1 facility. The experimental results first describe the physics of about 100 eV hohlraum formations and may extend our understanding of Z-pinch dynamic hohlraums for future inertial confinement fusion applications.

中文翻译:

巨龙一号设施动态空腔形成主要特征研究

聚龙 1 号设施通过内爆嵌套钨线阵列进行了 Z 收缩动态空腔实验,该阵列配置有 20/10 毫米直径和 168/84 根直径为 6.0 微米的外/内阵列线,到半径为 2.3 mm 的 10 mg/cc C15H20O6 泡沫转换器上。使用具有同步双光谱通道的轴上 X 射线成像系统,通过实验观察了动态空腔的冲击形成、传播和辐射传递的详细过程。当线阵列等离子体撞击泡沫转换器时,相互作用区动能的热化产生向内传播的冲击。内爆等离子体耗散的能量逐渐增加,导致激波增强,最终形成主辐射激波。在辐射激波的传播过程中,热辐射逐渐转移到内部区域,在巨龙一号设施的实验中,当主激波到达半径0.8 mm时产生均匀的空腔。实验结果首先描述了大约 100 eV 空腔形成的物理学,并可能扩展我们对 Z 型收缩动态空腔的理解,以用于未来的惯性约束聚变应用。
更新日期:2020-09-01
down
wechat
bug