当前位置: X-MOL 学术Math. Slovaca › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quadratic refinements of Young type inequalities
Mathematica Slovaca ( IF 0.9 ) Pub Date : 2020-10-27 , DOI: 10.1515/ms-2017-0416
Yonghui Ren 1 , Pengtong Li 1 , Guoqing Hong 1
Affiliation  

Abstract In this paper, we mainly give some quadratic refinements of Young type inequalities. Namely: (va+(1−v)b)2−v∑j=1N2j(b−ab2j−12j)2≤(avb1−v)2+v2(a−b)2 $$\begin{array}{} \displaystyle (va+(1-v)b)^{2}-v{{\sum\limits_{j=1}^N}}2^{j}\Big(b- \sqrt[2^{j}]{ab^{2^{j}-1} }\, \Big)^{2}\leq(a^{v}b^{1-v})^{2}+v^{2}(a-b)^{2} \end{array}$$ for v ∉ [0, 12N+1 $\begin{array}{} \displaystyle \frac{1}{2^{N+1}} \end{array}$], N ∈ ℕ, a, b > 0; and (va+(1−v)b)2−(1−v)∑j=1N2j(a−a2j−1b2j)2≤(avb1−v)2+(1−v)2(a−b)2 $$\begin{array}{} \displaystyle (va+(1-v)b)^{2}-(1-v){{\sum\limits_{j=1}^N}}2^{j}\Big(a- \sqrt[2^{j}]{a^{2^{j}-1}b}\, \Big)^{2}\leq(a^{v}b^{1-v})^{2}+(1-v)^{2}(a-b)^{2} \end{array}$$ for v ∉ [1 − 12N+1 $\begin{array}{} \displaystyle \frac{1}{2^{N+1}} \end{array}$, 1], N ∈ ℕ, a, b > 0. As an application of these scalars results, we obtain some matrix inequalities for operators and Hilbert-Schmidt norms.

中文翻译:

Young 型不等式的二次细化

摘要 本文主要给出Young型不等式的一些二次细化。即: (va+(1−v)b)2−v∑j=1N2j(b−ab2j−12j)2≤(avb1−v)2+v2(a−b)2 $$\begin{array}{} \displaystyle (va+(1-v)b)^{2}-v{{\sum\limits_{j=1}^N}}2^{j}\Big(b- \sqrt[2^{j} ]{ab^{2^{j}-1}}\, \Big)^{2}\leq(a^{v}b^{1-v})^{2}+v^{2}( ab)^{2} \end{array}$$ for v ∉ [0, 12N+1 $\begin{array}{} \displaystyle \frac{1}{2^{N+1}} \end{array }$], N ∈ ℕ, a, b > 0; 和 (va+(1−v)b)2−(1−v)∑j=1N2j(a−a2j−1b2j)2≤(avb1−v)2+(1−v)2(a−b)2 $ $\begin{array}{} \displaystyle (va+(1-v)b)^{2}-(1-v){{\sum\limits_{j=1}^N}}2^{j}\ Big(a- \sqrt[2^{j}]{a^{2^{j}-1}b}\, \Big)^{2}\leq(a^{v}b^{1-v })^{2}+(1-v)^{2}(ab)^{2} \end{array}$$ for v ∉ [1 − 12N+1 $\begin{array}{} \displaystyle \ frac{1}{2^{N+1}} \end{array}$, 1], N ∈ ℕ, a, b > 0. 作为这些标量的应用结果,
更新日期:2020-10-27
down
wechat
bug