当前位置: X-MOL 学术Int. J. Chem. Kinet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of stereoisomeric structure and bond location on the ignition and reaction pathways of hexenes
International Journal of Chemical Kinetics ( IF 1.5 ) Pub Date : 2020-09-30 , DOI: 10.1002/kin.21442
Cesar L. Barraza‐Botet 1 , Changpeng Liu 2 , John H. Kim 3 , Scott W. Wagnon 4 , Margaret S. Wooldridge 3, 5
Affiliation  

The current work presents new experimental autoignition and speciation data on the two cis‐hexene isomers: cis‐2‐hexene and cis‐3‐hexene. The new data provide insights on the effects of carbon‐carbon double bond location and stereoisomeric structures on ignition delay times and reaction pathways for linear hexene isomers. Experiments were performed using the University of Michigan rapid compression facility to determine ignition delay times from pressure‐time histories. Stoichiometric (ϕ = 1.0) mixtures at dilution levels of inert gas to O2 = 7.5:1 (mole basis) were investigated at an average pressure of 11 atm and temperatures from 809 to 1052 K. Speciation experiments were conducted at T = 900 K for the two cis‐hexene isomers, where fast‐gas sampling and gas chromatography were used to identify and quantify the two cis‐hexene isomers and stable intermediate species. The ignition delay time data showed negligible sensitivity to the location of the carbon‐carbon double bond and the stereoisomeric structure (cis‐trans), and the species data showed no correlation with the stereoisomeric structure, but there was a strong correlation of some of the measured species with the location of the double bond in the hexene isomer. In particular, 2‐hexene showed strong selectivity to propene, acetaldehyde, and 1,3‐butadiene, and 3‐hexene showed selectivity to propanal. Model predictions of ignition delay times were in excellent agreement with the experimental data. There was generally good agreement for the model predictions of the species data for 2‐hexene; however, the mechanism overpredicted some of the small aldehyde (C2‐C4) species for 3‐hexene. Reaction pathway analysis indicates the hexenes are almost exclusively consumed by H‐atom abstraction reactions at the conditions studied (P = 11 atm, T > 900 K), and not by C3‐C4 scission as observed in high‐temperature (>1300 K) hexene ignition studies. Improved estimates for 3‐hexene + OH reactions may improve model predictions for the species measured in this work.

中文翻译:

立体异构体结构和键位置对己烯的点燃和反应途径的影响

当前的工作提供了两个己烯异构体的新的实验自燃和形态数据:顺式-2-己烯和顺式-3-己烯。新数据提供了关于碳-碳双键位置和立体异构体结构对线性己烯异构体的点火延迟时间和反应路径的影响的见解。使用密歇根大学的快速压缩设备进行了实验,以便根据压力时间历史确定点火延迟时间。化学计量的(φ= 1.0)在惰性气体的稀释水平至O的混合物2  = 7.5:1(摩尔比)以11的平均压力进行了调查大气压,温度为809到1052个K.形态实验在进行Ť =两种顺式己烯异构体的900 K ,其中使用快速气体进样和气相色谱法鉴定和定量了两种顺式己烯异构体和稳定的中间体。点火延迟时间数据显示对碳-碳双键和立体异构体结构(顺式-反式)的敏感性可忽略不计,种类数据显示与立体异构体结构无相关性,但某些在己烯异构体中具有双键位置的被测物种。特别是2-己烯对丙烯,乙醛和1,3-丁二烯具有很强的选择性,而3-己烯对丙醛具有选择性。点火延迟时间的模型预测与实验数据非常吻合。对于2-己烯物种数据的模型预测,总体上有很好的一致性。然而,该机理高估了一些小醛(C 2 -C4)3-己烯的种类。反应途径分析表明己烯几乎被H-原子夺取反应在所研究(条件只消耗P  = 11个大气压,Ť  > 900 K),而不是被C 3 -C 4,如高温观察到断裂(> 1300 K)己烯着火研究。改进的3-己烯+ OH反应的估计值可能会改善这项工作中所测物种的模型预测。
更新日期:2020-09-30
down
wechat
bug