当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anti-icing nano SnO2 coated metallic surface wettability: optimization via statistical design
Surfaces and Interfaces ( IF 5.7 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.surfin.2020.100720
Seyyed Mohamad Sadati Tilebon , Reza Norouzbeigi

Abstract Super-hydrophobic tin oxide surfaces were fabricated and the anti-icing potential was investigated. The main purpose of the study was the examination of the seed-layer effect on the wettability of the prepared surfaces. The seeding was performed on Al-substrates by dip coating and consequently the common chemical bath deposition method was used for tin oxide deposition. Seed-layers were deposited under different conditions including combinations of some factors such as surfactant type and concentration, deposition cycles, the metallic precursor concentrations. Taguchi L18 design was used for deposited surfaces' wettability optimization, and Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and atomic force microscopy (AFM) analyses were used for characterization of seed-layers and coated surfaces. Formation of nanostructured seed-layers was illustrated by FE-SEM images. Moreover, a hydrophobic tin oxide surface having the water contact angle (WCA) of 137° was fabricated without any post-treatment step. Finally, the surface chemical modification was carried out by palmitic, lauric, and stearic acids. Accordingly, a superhydrophobic surface (WCA = 157.5° and contact angle hysteresis (CAH) = 2.5°) was achieved as the optimized sample. The anti-icing characteristic of the modified surface was examined and the results proved the success of the process.

中文翻译:

防冰纳米 SnO2 涂层金属表面润湿性:通过统计设计优化

摘要 制备了超疏水氧化锡表面并研究了其抗结冰能力。该研究的主要目的是检查种子层对制备表面润湿性的影响。通过浸涂在铝基板上进行播种,因此常见的化学浴沉积方法用于氧化锡沉积。种子层在不同条件下沉积,包括一些因素的组合,例如表面活性剂类型和浓度、沉积周期、金属前体浓度。Taguchi L18 设计用于沉积表面的润湿性优化,以及傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、X 射线衍射 (XRD)、场发射扫描电子显微镜 (FE-SEM)、和原子力显微镜 (AFM) 分析用于表征种子层和涂层表面。纳米结构种子层的形成由 FE-SEM 图像说明。此外,在没有任何后处理步骤的情况下制造了具有 137° 的水接触角 (WCA) 的疏水氧化锡表面。最后,通过棕榈酸、月桂酸和硬脂酸进行表面化学改性。因此,实现了超疏水表面(WCA = 157.5° 和接触角滞后 (CAH) = 2.5°)作为优化样品。检查了改性表面的防冰特性,结果证明该过程是成功的。在没有任何后处理步骤的情况下制造了具有 137° 水接触角 (WCA) 的疏水氧化锡表面。最后,通过棕榈酸、月桂酸和硬脂酸进行表面化学改性。因此,实现了超疏水表面(WCA = 157.5° 和接触角滞后 (CAH) = 2.5°)作为优化样品。检查了改性表面的防冰特性,结果证明该过程是成功的。在没有任何后处理步骤的情况下制造了具有 137° 水接触角 (WCA) 的疏水氧化锡表面。最后,通过棕榈酸、月桂酸和硬脂酸进行表面化学改性。因此,实现了超疏水表面(WCA = 157.5° 和接触角滞后 (CAH) = 2.5°)作为优化样品。检查了改性表面的防冰特性,结果证明该过程是成功的。
更新日期:2020-12-01
down
wechat
bug