当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerostructural Wing Shape Optimization assisted by Algorithmic Differentiation
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-09-26 , DOI: arxiv-2009.12669
Rocco Bombardieri and Rauno Cavallaro and Ruben Sanchez and Nicolas R. Gauger

With more efficient structures, last trends in aeronautics have witnessed an increased flexibility of wings, calling for adequate design and optimization approaches. To correctly model the coupled physics, aerostructural optimization has progressively become more important, being nowadays performed also considering higher-fidelity discipline methods, i.e., CFD for aerodynamics and FEM for structures. In this paper a methodology for high-fidelity gradient-based aerostructural optimization of wings, including aerodynamic and structural nonlinearities, is presented. The main key feature of the method is its modularity: each discipline solver, independently employing algorithmic differentiation for the evaluation of adjoint-based sensitivities, is interfaced at high-level by means of a wrapper to both solve the aerostructural primal problem and evaluate exact discrete gradients of the coupled problem. The implemented capability, ad-hoc created to demonstrate the methodology, and freely available within the open-source SU2 multiphysics suite, is applied to perform aerostructural optimization of aeroelastic test cases based on the ONERA M6 and NASA CRM wings. Single-point optimizations, employing Euler or RANS flow models, are carried out to find wing optimal outer mold line in terms of aerodynamic efficiency. Results remark the importance of taking into account the aerostructural coupling when performing wing shape optimization.

中文翻译:

算法微分辅助的航空结构机翼形状优化

随着更高效的结构,航空业的最新趋势见证了机翼灵活性的增加,需要适当的设计和优化方法。为了正确模拟耦合物理,航空结构优化逐渐变得越来越重要,现在也考虑更高保真度的学科方法,即空气动力学的 CFD 和结构的 FEM。在本文中,提出了一种基于高保真梯度的机翼航空结构优化方法,包括空气动力学和结构非线性。该方法的主要关键特征是它的模块化:每个学科求解器,独立地采用算法微分来评估基于伴随的敏感性,通过包装器在高层进行接口,以解决航空结构的原始问题并评估耦合问题的精确离散梯度。已实施的功能是专门为演示该方法而创建的,可在开源 SU2 多物理场套件中免费获得,用于执行基于 ONERA M6 和 NASA CRM 机翼的气动弹性测试案例的航空结构优化。使用欧拉或 RANS 流动模型进行单点优化,以找到机翼在空气动力学效率方面的最佳外型线。结果表明在执行机翼形状优化时考虑航空结构耦合的重要性。并在开源 SU2 多物理场套件中免费提供,用于执行基于 ONERA M6 和 NASA CRM 机翼的气动弹性测试案例的航空结构优化。使用欧拉或 RANS 流动模型进行单点优化,以找到机翼在空气动力学效率方面的最佳外型线。结果表明在执行机翼形状优化时考虑航空结构耦合的重要性。并在开源 SU2 多物理场套件中免费提供,用于执行基于 ONERA M6 和 NASA CRM 机翼的气动弹性测试案例的航空结构优化。使用欧拉或 RANS 流动模型进行单点优化,以找到空气动力学效率方面的机翼最佳外型线。结果表明在执行机翼形状优化时考虑航空结构耦合的重要性。
更新日期:2020-10-02
down
wechat
bug