当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Versus Classical Spin Fragmentation in Dipolar Kagome IceHo3Mg2Sb3O14
Physical Review X ( IF 11.6 ) Pub Date : 2020-09-29 , DOI: 10.1103/physrevx.10.031069
Zhiling Dun 1, 2 , Xiaojian Bai 1 , Joseph A M Paddison 1, 3, 4 , Emily Hollingworth 1 , Nicholas P Butch 5 , Clarina D Cruz 6 , Matthew B Stone 6 , Tao Hong 6 , Franz Demmel 7 , Martin Mourigal 1 , Haidong Zhou 2, 8
Affiliation  

A promising route to realize entangled magnetic states combines geometrical frustration with quantum-tunneling effects. Spin-ice materials are canonical examples of frustration, and Ising spins in a transverse magnetic field are the simplest many-body model of quantum tunneling. Here, we show that the tripod-kagome lattice material Ho3Mg2Sb3O14 unites an icelike magnetic degeneracy with quantum-tunneling terms generated by an intrinsic splitting of the Ho3+ ground-state doublet, which is further coupled to a nuclear spin bath. Using neutron scattering and thermodynamic experiments, we observe a symmetry-breaking transition at T*0.32K to a remarkable state with three peculiarities: a concurrent recovery of magnetic entropy associated with the strongly coupled electronic and nuclear degrees of freedom; a fragmentation of the spin into periodic and icelike components; and persistent inelastic magnetic excitations down to T0.12K. These observations deviate from expectations of classical spin fragmentation on a kagome lattice, but can be understood within a model of dipolar kagome ice under a homogeneous transverse magnetic field, which we survey with exact diagonalization on small clusters and mean-field calculations. In Ho3Mg2Sb3O14, hyperfine interactions dramatically alter the single-ion and collective properties, and suppress possible quantum correlations, rendering the fragmentation with predominantly single-ion quantum fluctuations. Our results highlight the crucial role played by hyperfine interactions in frustrated quantum magnets and motivate further investigations of the role of quantum fluctuations on partially ordered magnetic states.

中文翻译:

偶极 Kagome IceHo3Mg2Sb3O14 中的量子与经典自旋断裂

实现纠缠磁态的一条有前途的途径将几何挫败与量子隧道效应结合起来。自旋冰材料是挫败的典型例子,横向磁场中的伊辛自旋是最简单的量子隧道多体模型。在这里,我们展示了三脚架-kagome晶格材料32314将冰状磁简并性与由内部分裂产生的量子隧道项结合起来3+基态双峰,进一步耦合到核旋转浴。通过中子散射和热力学实验,我们观察到对称破缺跃迁时间*0.32K达到具有三个特性的显着状态:与强耦合电子和核自由度相关的磁熵的同时恢复;自旋分裂成周期性和冰状成分;和持续的非弹性磁激励低至时间0.12K。这些观察结果偏离了戈薇晶格上经典自旋碎裂的预期,但可以在均匀横向磁场下的偶极戈薇冰模型中理解,我们通过小团簇的精确对角化和平均场计算来调查该模型。在32314,超精细相互作用极大地改变了单离子和集体特性,并抑制了可能的量子相关性,使碎片主要以单离子量子涨落为主。我们的结果强调了超精细相互作用在受挫量子磁体中发挥的关键作用,并激发了对量子涨落对部分有序磁态的作用的进一步研究。
更新日期:2020-09-29
down
wechat
bug