当前位置: X-MOL 学术Front. Cell. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Astrocytes—The Ultimate Effectors of Long-Range Neuromodulatory Networks?
Frontiers in Cellular Neuroscience ( IF 4.2 ) Pub Date : 2020-09-07 , DOI: 10.3389/fncel.2020.581075
Anthony G. Pacholko , Caitlin A. Wotton , Lane K. Bekar

It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.



中文翻译:

星形胶质细胞—远程神经调节网络的最终效应器?

长期以来人们一直认为,星形胶质细胞由于缺乏电信号传导,因此不参与与神经元的交流。但是,我们现在知道,一个星形胶质细胞平均在各自的域内维持并调节超过14万个突触和兴奋性突触的细胞外神经递质和钾水平,并形成可以传播钙波以影响远处细胞的合胞体通过释放“胶质递质”,例如谷氨酸盐,ATP或腺苷。神经调节剂可通过抑制作用来影响皮层回路内的信噪比和频率传输,从而可以过滤相关刺激和无关刺激。此外,同步的“休息”和去同步的“激活”的大脑状态被高频神经调节活动的短暂爆发所控制,这突显了对强大,快速和深远的神经调节的需求。由于许多神经调节剂以降解/摄取和复杂中枢神经系统限制扩散距离的方式大量释放,我们提出一个问题-星形胶质细胞是否负责迅速将神经调节剂作用扩展到每个突触?已知神经调节剂会影响大脑状态之间的转换,从而导致对可塑性的控制,对明显刺激,清醒和睡眠的反应。这些快速而广泛的状态转换要求神经调节剂可以同时影响大范围和多样化的区域,这在简单扩散的限制下是不可能实现的。有趣的是,鉴于每个星形胶质细胞可以:(1)包入大量突触,星形胶质细胞的理想位置是在大突触群体上放大/扩展神经调节作用。(2)释放已知会产生抑制作用的神经胶质递质(谷氨酸/ ATP /腺苷);(3)调节可能影响兴奋性和兴奋/抑制平衡的细胞外钾;(4)表达所有神经调节剂的受体。在这篇评论文章中,我们探讨了 这些快速而广泛的状态转换要求神经调节剂可以同时影响大范围和多样化的区域,这在简单扩散的限制下是不可能实现的。有趣的是,鉴于每个星形胶质细胞可以:(1)包入大量突触,星形胶质细胞的理想位置是在大突触群体上放大/扩展神经调节作用。(2)释放已知会产生抑制作用的神经胶质递质(谷氨酸/ ATP /腺苷);(3)调节可能影响兴奋性和兴奋/抑制平衡的细胞外钾;(4)表达所有神经调节剂的受体。在这篇评论文章中,我们探讨了 这些快速而广泛的状态转换要求神经调节剂可以同时影响大范围和多样化的区域,这在简单扩散的限制下是不可能实现的。有趣的是,鉴于每个星形胶质细胞可以:(1)包入大量突触,星形胶质细胞的理想位置是在大突触群体上放大/扩展神经调节作用。(2)释放已知会产生抑制作用的神经胶质递质(谷氨酸/ ATP /腺苷);(3)调节可能影响兴奋性和兴奋/抑制平衡的细胞外钾;(4)表达所有神经调节剂的受体。在这篇评论文章中,我们探讨了 鉴于每个星形胶质细胞可以:(1)包裹大量的突触;在理想的情况下,星形胶质细胞的位置可以在大的突触群体中放大/扩展神经调节作用。(2)释放已知会产生抑制作用的神经胶质递质(谷氨酸/ ATP /腺苷);(3)调节可能影响兴奋性和兴奋/抑制平衡的细胞外钾;(4)表达所有神经调节剂的受体。在这篇评论文章中,我们探讨了 鉴于每个星形胶质细胞可以:(1)包裹大量的突触;在理想的情况下,星形胶质细胞的位置可以在大的突触群体中放大/扩展神经调节作用。(2)释放已知会产生抑制作用的神经胶质递质(谷氨酸/ ATP /腺苷);(3)调节可能影响兴奋性和兴奋/抑制平衡的细胞外钾;(4)表达所有神经调节剂的受体。在这篇评论文章中,我们探讨了假设 星形胶质细胞扩展和放大对神经元网络的神经调节影响 通过钙动力学的变化,神经胶质递质的释放和钾稳态。鉴于神经调节网络是我们的睡眠-觉醒周期和行为状态的核心,并决定了我们如何与环境相互作用,本文将重点介绍星形胶质细胞的基本功能在体内平衡,一般认知和精神疾病中的重要性。

更新日期:2020-09-29
down
wechat
bug