当前位置: X-MOL 学术Optim. Control Appl. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geostationary debris mitigation using minimum time solar sail trajectories with eclipse constraints
Optimal Control Applications and Methods ( IF 2.0 ) Pub Date : 2020-09-29 , DOI: 10.1002/oca.2676
Patrick Kelly 1 , Riccardo Bevilacqua 1
Affiliation  

Minimum time solar sailing trajectories are introduced using a combination of indirect and direct optimal control techniques. Here, large‐scale, multiphase optimal control problems are solved using a pseudospectral collocation technique applied to an orbital debris mitigation concept. These solutions are obtained for realistic sail dimensions, producing multirevolution, Earth‐centered trajectories while accounting for uncontrolled spacecraft dynamics in the eclipse regions. Specifically, minimum time solutions for orbit transfer and phasing maneuvers are obtained using only solar radiation pressure for propulsion and control. First, an optimal primer vector steering history is obtained through numerical approximation. Locally optimal, closed‐form solutions are then implemented based on the primer vector direction, resulting in minimum time satisfaction of desired terminal orbital conditions. In addition, a novel solution strategy is presented for multiphase optimal control problems characterized by uncontrollable dynamics with flexible phase boundaries. The maneuvers presented will be shown to enable efficient orbital debris mitigation for large‐scale debris in geostationary orbits.

中文翻译:

使用具有日食约束的最短时间太阳帆轨迹减轻对地静止碎片

结合间接和直接最佳控制技术引入了最短时间的太阳航行轨迹。在此,使用应用于轨道碎片减缓概念的伪谱搭配技术解决了大规模多相最优控制问题。这些解决方案是针对现实的风帆尺寸而获得的,产生了多次旋转的以地球为中心的轨迹,同时考虑了日食区域中不受控制的航天器动力学。具体而言,仅使用太阳辐射压力进行推进和控制,即可获得用于轨道转移和定相机动的最短时间解。首先,通过数值逼近获得最佳的引物矢量操纵历史。然后根据引物向量的方向实施局部最优的闭式解,从而使所需的终端轨道条件的时间满足最小化。此外,针对具有不可控制的动力学和灵活的相界特征的多相最优控制问题,提出了一种新颖的解决方案。所展示的演习将被证明可以有效地缓解对地静止轨道中的大型碎片的轨道碎片。
更新日期:2020-09-29
down
wechat
bug