当前位置: X-MOL 学术Nat. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discovering functional evolutionary dependencies in human cancers
Nature Genetics ( IF 31.7 ) Pub Date : 2020-09-28 , DOI: 10.1038/s41588-020-0703-5
Marco Mina , Arvind Iyer , Daniele Tavernari , Franck Raynaud , Giovanni Ciriello

Cancer cells retain genomic alterations that provide a selective advantage. The prediction and validation of advantageous alterations are major challenges in cancer genomics. Moreover, it is crucial to understand how the coexistence of specific alterations alters response to genetic and therapeutic perturbations. In the present study, we inferred functional alterations and preferentially selected combinations of events in >9,000 human tumors. Using a Bayesian inference framework, we validated computational predictions with high-throughput readouts from genetic and pharmacological screenings on 2,000 cancer cell lines. Mutually exclusive and co-occurring cancer alterations reflected, respectively, functional redundancies able to rescue the phenotype of individual target inhibition, or synergistic interactions, increasing oncogene addiction. Among the top scoring dependencies, co-alteration of the phosphoinositide 3-kinase (PI3K) subunit PIK3CA and the nuclear factor NFE2L2 was a synergistic evolutionary trajectory in squamous cell carcinomas. By integrating computational, experimental and clinical evidence, we provide a framework to study the combinatorial functional effects of cancer genomic alterations.



中文翻译:

发现人类癌症中的功能进化依赖性

Cancer cells retain genomic alterations that provide a selective advantage. The prediction and validation of advantageous alterations are major challenges in cancer genomics. Moreover, it is crucial to understand how the coexistence of specific alterations alters response to genetic and therapeutic perturbations. In the present study, we inferred functional alterations and preferentially selected combinations of events in >9,000 human tumors. Using a Bayesian inference framework, we validated computational predictions with high-throughput readouts from genetic and pharmacological screenings on 2,000 cancer cell lines. Mutually exclusive and co-occurring cancer alterations reflected, respectively, functional redundancies able to rescue the phenotype of individual target inhibition, or synergistic interactions, increasing oncogene addiction. Among the top scoring dependencies, co-alteration of the phosphoinositide 3-kinase (PI3K) subunit PIK3CA和核因子NFE2L2是鳞状细胞癌的协同进化轨迹。通过整合计算,实验和临床证据,我们提供了一个框架来研究癌症基因组改变的组合功能效应。

更新日期:2020-09-28
down
wechat
bug