当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic‐Scale Interface Engineering: Boosting Oxygen Electroreduction over Supported Ternary Alloys Fabricated by Carbon‐Assisted Galvanic Replacement
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2020-09-27 , DOI: 10.1002/admi.202001267
Yucan Su 1 , Jingjun Liu 1 , Shaolan Mo 1 , Feng Wang 1
Affiliation  

Interfacial ensemble and ligand engineering is a smart strategy to economically and efficiently improve electrocatalytic activity of composite catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this paper, a ternary PtPdCu alloy, chemically coupled with carbon black (11.9 wt% Pt), is synthesized in large scale via carbon‐assisted galvanic replacement in anhydrous ethylene glycol (EG) solutions. The obtained low platinum alloy disperses well on carbon with an average size of about 1.9 nm. In 0.1 m HClO4, the supported alloy exhibits superior ORR activity and long‐term stability than those obtained by unsupported alloy or commercial Pt/C (20 wt% Pt). The substantially improved property can result from the presence of interfacial ensemble and ligand effects derived from d–p‐orbital hybridization of Pt and C atoms at atomic level, while the good durability is responsible for enriched Pd atoms at near‐surface layers that hinder the leaching of Pt and Cu atoms in their alloys, as verified by density functional theory (DFT) results. Therefore, interface engineering tuned by modified galvanic replacement may be a feasible strategy for large‐scale preparation of supported catalysts with nanoengineered interfaces.

中文翻译:

原子尺度的界面工程:通过碳辅助电化学置换法制备的支持三元合金上的氧还原反应

界面集成和配体工程是一种经济有效地提高复合催化剂对质子交换膜燃料电池中氧还原反应(ORR)的电催化活性的明智策略。在本文中,通过在无水乙二醇(EG)溶液中进行碳辅助电置换,大规模合成了与碳黑(11.9 wt%Pt)化学偶联的三元PtPdCu合金。所获得的低铂合金在碳上分散良好,平均尺寸约为1.9 nm。在0.1 m HClO 4中,与无载体合金或市售Pt / C(20 wt%Pt)所获得的相比,负载合金具有更佳的ORR活性和长期稳定性。性质的显着改善可归因于Pt和C原子在原子水平上的d-p轨道杂化产生的界面集合和配体效应,而良好的耐久性是阻碍近地表层富集Pd原子的原因。密度泛函理论(DFT)的结果证实了Pt和Cu原子在合金中的浸出。因此,通过大规模的电置换替代的界面工程可能是大规模制备具有纳米工程界面的负载型催化剂的可行策略。
更新日期:2020-11-21
down
wechat
bug