当前位置: X-MOL 学术Aerosp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-dimensional uncertainty quantification for Mars atmospheric entry using adaptive generalized polynomial chaos
Aerospace Science and Technology ( IF 5.6 ) Pub Date : 2020-09-28 , DOI: 10.1016/j.ast.2020.106240
Xiuqiang Jiang , Shuang Li , Roberto Furfaro , Zhenbo Wang , Yuandong Ji

The probabilistic uncertainties in Mars atmospheric entry degrade the entry guidance performance. The propagation law of high-dimensional uncertainty during Mars atmospheric entry is still an open problem that should be investigated. The current work aims to examine the uncertainty propagation during Mars atmospheric entry due to uncertain initial state and model parameters, with introducing the generalized polynomial chaos method into Mars atmospheric entry dynamics simulations. For more efficient and accurate, generalized polynomial chaos is modified through spectral decomposition and random space decomposition. First, stochastic dynamics are modeled and transformed into equivalent deterministic dynamics in a higher-dimensional space and are updated adaptively when the statistic characteristic of the system state changes greatly. Second, the random space is decomposed when the relative error in variance becomes larger than the predefined threshold. In each random sub-domain, the updated generalized polynomial chaos is employed. Finally, the adaptive generalized polynomial chaos is used to quantify the uncertainty propagation in Mars atmospheric entry dynamics. Comparison studies are also performed with traditional generalized polynomial chaos and Monte-Carlo simulations. The influence levels and the evolution profiles of the initial and parametric uncertainties are revealed through numerical simulations.



中文翻译:

使用自适应广义多项式混沌进行火星大气进入的高维不确定性量化

火星大气进入的概率不确定性降低了进入引导性能。火星大气进入过程中高维不确定性的传播规律仍然是一个尚待研究的问题。当前的工作旨在检查由于不确定的初始状态和模型参数而导致的火星大气进入过程中的不确定性传播,并将广义多项式混沌方法引入火星大气进入动力学模拟中。为了更有效,更准确地通过频谱分解和随机空间分解来修改广义多项式混沌。首先,对随机动力学进行建模,并将其转换为高维空间中的等效确定性动力学,并在系统状态的统计特性发生较大变化时自适应地进行更新。第二,当相对方差误差大于预定阈值时,将分解随机空间。在每个随机子域中,采用更新的广义多项式混沌。最后,使用自适应广义多项式混沌来量化火星大气进入动力学中的不确定性传播。还使用传统的广义多项式混沌和蒙特卡洛模拟进行比较研究。通过数值模拟揭示了初始不确定性和参数不确定性的影响水平和演化曲线。自适应广义多项式混沌用于量化火星大气进入动力学中的不确定性传播。还使用传统的广义多项式混沌和蒙特卡洛模拟进行比较研究。通过数值模拟揭示了初始不确定性和参数不确定性的影响水平和演化曲线。自适应广义多项式混沌用于量化火星大气进入动力学中的不确定性传播。还使用传统的广义多项式混沌和蒙特卡洛模拟进行比较研究。通过数值模拟揭示了初始不确定性和参数不确定性的影响水平和演化曲线。

更新日期:2020-10-07
down
wechat
bug