当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities
Additive Manufacturing ( IF 11.0 ) Pub Date : 2020-09-28 , DOI: 10.1016/j.addma.2020.101619
Erfan Maleki , Sara Bagherifard , Michele Bandini , Mario Guagliano

Metal additive manufacturing is a rapidly expanding area owing to its capacity to fabricate parts of intricate geometries with customized features for a wide range of applications. However, these parts generally exhibit inadequate and poor surface quality in the as-built configuration. The surface imperfections and defects ranging from staircase effect due to the layer by layer nature of the deposition techniques, partially fused feedstock material, to balling effects, spatters, or inadequate fusion lead to a notably irregular surface morphology. This high and irregular surface roughness can significantly deteriorate the performance of the additive manufactured parts imposing a substantial limit on their prospective applications; for instance, fatigue performance, wear and scratch resistance, dimensional accuracy, and aesthetical aspects can be highly affected by these surface defects. Accordingly, a great effort has been lately dedicated to developing post-treatments for improving the surface quality of additively manufactured metallic parts. In this paper, various treatments applied to as-built samples fabricated using different additive manufacturing technologies are introduced and discussed. The advances in this area are highlighted, and the obtained results from different categories of post-treatments are compared and reviewed. Challenges and opportunities to gain more control on the surface roughness of additively manufactured metallic parts through the application of these post-treatments are addressed.



中文翻译:

金属增材制造的表面后处理:进展,挑战和机遇

金属增材制造领域正在迅速发展,这是由于其具有制造具有广泛用途的定制功能的复杂几何形状零件的能力。然而,这些零件在建成状态下通常表现出不足和不良的表面质量。表面缺陷和缺陷的范围从由于沉积技术的逐层性质导致的阶梯效应,部分熔融的原料到球形效应,飞溅或熔融不足导致明显的不规则表面形态。这种高且不规则的表面粗糙度会显着降低增材制造零件的性能,从而对其预期的应用施加实质性限制。例如疲劳性能,耐磨性和耐刮擦性,尺寸精度,这些表面缺陷会极大地影响美观方面。因此,近来一直致力于开发用于改善增材制造的金属零件的表面质量的后处理。在本文中,介绍并讨论了适用于使用不同增材制造技术制造的竣工样品的各种处理方法。突出了该领域的进展,并比较和审查了从不同类别的后处理获得的结果。解决了通过应用这些后处理来更好地控制增材制造的金属零件的表面粗糙度的挑战和机遇。最近,人们一直致力于开发后处理,以改善增材制造的金属零件的表面质量。在本文中,介绍并讨论了适用于使用不同增材制造技术制造的竣工样品的各种处理方法。突出了该领域的进展,并比较和审查了从不同类别的后处理获得的结果。解决了通过应用这些后处理来更好地控制增材制造的金属零件的表面粗糙度的挑战和机遇。最近,人们一直致力于开发后处理,以改善增材制造的金属零件的表面质量。在本文中,介绍并讨论了适用于使用不同增材制造技术制造的竣工样品的各种处理方法。突出了该领域的进展,并比较和审查了从不同类别的后处理获得的结果。解决了通过应用这些后处理来更好地控制增材制造的金属零件的表面粗糙度的挑战和机遇。突出了该领域的进展,并比较和审查了从不同类别的后处理获得的结果。解决了通过应用这些后处理来更好地控制增材制造的金属零件的表面粗糙度的挑战和机遇。突出了该领域的进展,并比较和审查了从不同类别的后处理获得的结果。解决了通过应用这些后处理来更好地控制增材制造的金属零件的表面粗糙度的挑战和机遇。

更新日期:2020-09-28
down
wechat
bug