当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
S-PFM model for ideal grain growth
Acta Materialia ( IF 8.3 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.actamat.2020.09.073
A. Dimokrati , Y. Le Bouar , M. Benyoucef , A. Finel

Abstract The phase-field method is increasingly used for studying grain growth in metallic alloys. Such an approach offers a thermodynamically consistent framework for studying microstructure evolution during grain growth without the need to explicitly track the interface positions. However, the numerical solution of the models requires a grid spacing much smaller than the interface width. This leads to computationally very intensive simulations, especially when a large number of grains is required to accurately measure statistical quantities. The recently proposed S-PFM approach provides a new inherently discrete formulation of phase field models where the interface width can be as small as the grid spacing, thus drastically improving the numerical performances of the method. Here, we show that this approach can be extended to a multi-phase field model for ideal grain growth. Then, we perform two dimensional simulations to analyse in detail the kinetics of both grain boundaries and triple junctions. We compare our model to a classical phase field formulation and we demonstrate that, for a prescribed accuracy, the memory requirement and simulation times are both reduced by a factor of 4 D , where D is the space dimension. Finally, we perform a large-scale simulation of grain growth in two dimensions and show that the method is able to reveal the specific shape of the grain size distribution in the scale-invariant regime displaying two peaks around the mean grain size and quantitative measurements of the underlying topological classes are performed.

中文翻译:

理想晶粒生长的 S-PFM 模型

摘要 相场法越来越多地用于研究金属合金中的晶粒生长。这种方法为研究晶粒生长过程中的微观结构演变提供了热力学一致的框架,而无需明确跟踪界面位置。然而,模型的数值解需要比界面宽度小得多的网格间距。这导致计算量非常大的模拟,特别是当需要大量晶粒来准确测量统计量时。最近提出的 S-PFM 方法提供了一种新的固有离散相场模型,其中界面宽度可以与网格间距一样小,从而大大提高了该方法的数值性能。这里,我们表明,这种方法可以扩展到理想晶粒生长的多相场模型。然后,我们进行二维模拟以详细分析晶界和三重结的动力学。我们将我们的模型与经典的相场公式进行比较,我们证明,对于规定的精度,内存要求和仿真时间都减少了 4 D,其中 D 是空间维度。最后,我们对二维晶粒生长进行了大规模模拟,并表明该方法能够揭示在尺度不变区域中晶粒尺寸分布的特定形状,显示平均晶粒尺寸周围的两个峰值和定量测量执行底层拓扑类。我们执行二维模拟来详细分析晶界和三重结的动力学。我们将我们的模型与经典的相场公式进行比较,我们证明,对于规定的精度,内存要求和模拟时间都减少了 4 D,其中 D 是空间维度。最后,我们对二维晶粒生长进行了大规模模拟,并表明该方法能够揭示在尺度不变区域中晶粒尺寸分布的特定形状,显示平均晶粒尺寸周围的两个峰值和定量测量执行底层拓扑类。我们执行二维模拟来详细分析晶界和三重结的动力学。我们将我们的模型与经典的相场公式进行比较,我们证明,对于规定的精度,内存要求和仿真时间都减少了 4 D,其中 D 是空间维度。最后,我们对二维晶粒生长进行了大规模模拟,并表明该方法能够揭示在尺度不变区域中晶粒尺寸分布的特定形状,显示平均晶粒尺寸周围的两个峰值和定量测量执行底层拓扑类。对于规定的精度,内存要求和仿真时间都减少了 4 D 倍,其中 D 是空间维度。最后,我们对二维晶粒生长进行了大规模模拟,并表明该方法能够揭示在尺度不变的区域中晶粒尺寸分布的特定形状,显示平均晶粒尺寸周围的两个峰值和定量测量执行底层拓扑类。对于规定的精度,内存要求和仿真时间都减少了 4 D 倍,其中 D 是空间维度。最后,我们对二维晶粒生长进行了大规模模拟,并表明该方法能够揭示在尺度不变区域中晶粒尺寸分布的特定形状,显示平均晶粒尺寸周围的两个峰值和定量测量执行底层拓扑类。
更新日期:2020-12-01
down
wechat
bug