当前位置: X-MOL 学术Mol. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transcriptional regulation of the Nε‐fructoselysine metabolism in Escherichia coli by global and substrate‐specific cues
Molecular Microbiology ( IF 2.6 ) Pub Date : 2020-09-26 , DOI: 10.1111/mmi.14608
Benedikt Graf von Armansperg 1 , Franziska Koller 1 , Nicola Gericke 1 , Michael Hellwig 2 , Pravin Kumar Ankush Jagtap 3 , Ralf Heermann 4 , Janosch Hennig 3 , Thomas Henle 2 , Jürgen Lassak 1
Affiliation  

Thermally processed food is an important part of the human diet. Heat‐treatment, however, promotes the formation of so‐called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP‐levels and inside warm‐blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine‐6‐phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate‐specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.

中文翻译:

通过全局和底物特异性线索对大肠杆菌 Nε-果糖赖氨酸代谢的转录调控

热加工食品是人类饮食的重要组成部分。然而,热处理促进了所谓的 Amadori 重排产物的形成,如果糖赖氨酸。包括大肠杆菌在内的肠道微生物群可以利用这些化合物作为营养来源。虽然对果糖赖氨酸的降解途径进行了很好的描述,但对相应途径基因frlABCD 的调节仍然知之甚少。在这里,我们使用生物信息学与分子和生化分析相结合,并表明大肠杆菌中的果糖赖氨酸代谢在转录水平受到严格控制。全局调节因子 CRP (CAP) 以及替代 σ32 (RpoH) 分别有助于高 cAMP 水平和温血宿主内部的启动子激活。此外,我们鉴定并表征了与frlABCD相邻编码的转录调节因子FrlR,作为 6-磷酸果糖赖氨酸特异性阻遏物。我们的研究提供了深刻的证据,表明全局和底物特异性调节的相互作用是有效利用人类肠道环境中不寻常底物的完美适应策略。
更新日期:2020-09-26
down
wechat
bug