当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thiophene Terminated Fullerene Derivatives for Interfacial Modification toward High Efficiency MAPbI3 Perovskite Solar Cells
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-09-25 , DOI: 10.1021/acsaem.0c01491
Hui Wang 1, 2 , Mengting Chen 1, 2 , Fabao Li 3 , Rui Sun 3 , Pang Wang 1, 2 , Fanghao Ye 1, 2 , Huijun Zhang 1, 2 , Weiqiang Miao 1, 2 , Dan Liu 1, 2 , Tao Wang 1, 2
Affiliation  

Interface engineering has become a critical process to fabricate efficient and stable planar heterojunction perovskite solar cells (PSCs), as the degradation of perovskite, hysteresis, and photo and thermal instability can all be triggered by the defective interfaces of PSCs. Herein, two fullerene derivatives, NMPPF and NMTTF, have been designed as interlayers between the MAPbI3 and TiO2 electron transport layer. The thiophene terminals of NMTTF have been found to effectively passivate the uncoordinated Pb2+ of perovskite, reducing trap density and charge recombination of PSCs as well as facilitating charge transport at the perovskite and TiO2 interface. Compared to the reference MAPbI3 PSC with a maximum power conversion efficiency (PCEmax) of 18.7% and serious hysteresis (ΔPCE = 7.2%), PSCs incorporating NMTTF achieve a PCEmax of 19.5% with minor hysteresis (ΔPCE = 1.2%) and outperform the performance of NMPPF (PCEmax = 18.0%, ΔPCE = 2.3%) and PC61BM (PCEmax = 18.9%, ΔPCE = 1.4%) modified PSCs. Unencapsulated PSCs adopting these NMPPF and NMTTF interlayers also exhibit good storage stability, maintaining 80% of their initial PCEs after storing in ambient for 30 days. This work demonstrates that the thiophene moiety can be an efficient defect passivation unit to design new fullerene molecules for interfacial engineering of PSCs with high efficiency and stability.

中文翻译:

噻吩封端的富勒烯衍生物,用于高效MAPbI 3钙钛矿太阳能电池的界面改性

界面工程已成为制造高效,稳定的平面异质结钙钛矿太阳能电池(PSC)的关键过程,因为钙钛矿的降解,磁滞以及光和热不稳定性都可以由PSC的有缺陷的界面引发。在此,已经设计了两种富勒烯衍生物NMPPF和NMTTF作为MAPbI 3和TiO 2电子传输层之间的中间层。已发现NMTTF的噻吩末端可有效钝化钙钛矿的未配位Pb 2+,降低PSC的陷阱密度和电荷重组,并促进钙钛矿和TiO 2界面处的电荷迁移。与参考MAPbI 3相比具有最大功率转换效率(PCE max)为18.7%和严重滞后(ΔPCE= 7.2%)的PSC,具有NMTTF的PSC达到PCE max为19.5%且具有较小的滞后(ΔPCE= 1.2%),并且优于NMPPF( PCE max = 18.0%,ΔPCE= 2.3%)和PC 61 BM(PCE max = 18.9%,ΔPCE= 1.4%)改性PSC。采用这些NMPPF和NMTTF中间层的未封装PSC也显示出良好的存储稳定性,在环境中存储30天后,可以保持其80%的初始PCE。这项工作表明,噻吩部分可以是一种高效的缺陷钝化单元,可以高效,稳定地为PSC的界面工程设计新的富勒烯分子。
更新日期:2020-10-26
down
wechat
bug