当前位置: X-MOL 学术Simul. Model. Pract. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Drilling of biocomposite materials: Modelling and experimental validation
Simulation Modelling Practice and Theory ( IF 3.5 ) Pub Date : 2020-09-26 , DOI: 10.1016/j.simpat.2020.102203
A. Díaz-Álvarez , J. Díaz-Álvarez , N. Feito , C. Santiuste

Induced damage during biocomposites drilling is significantly different to that produced on composites based on synthetic reinforcement such as carbon or glass fibers. In composites reinforced with carbon or glass fibers, induced damage increases with feed rate, however damage was observed to decrease with feed rate in biocomposites reinforced with natural fibers. This work is focused on the explanation of this differences between biocomposites and traditional composites based on the effect of strain rate on the material behavior during machining. A FEM model has been developed in ABAQUS/Explicit to verify this hypothesis. This numerical model has been used to explain the differences found between traditional composites and biocomposites in the influence of the main drilling parameters on induced damage during drilling. Experimental tests were conducted to validate the model through the comparison between thrust forces and damage factor for two different drills geometries on Flax/PLA bio composites. The results indicate that the decrease of induced damage with feed rate is only predicted when the constitutive model accounts for experimental behavior observed in this type of composites. Additionally, the numerical model demonstrated the ability to reproduce the effect of the different cutting conditions (cutting speed, feed, thickness and drill geometry) observed during experimental tests on induced damage during drilling.



中文翻译:

生物复合材料的钻孔:建模和实验验证

生物复合材料钻孔过程中引起的损坏与基于合成增强材料(如碳纤维或玻璃纤维)的复合材料产生的损坏明显不同。在用碳纤维或玻璃纤维增​​强的复合材料中,诱导的损伤随进料速率的增加而增加,但是在天然纤维增强的生物复合材料中,观察到的损伤随进料速率的降低而降低。这项工作基于应变率对机械加工过程中材料性能的影响,着重于解释生物复合材料与传统复合材料之间的这种差异。在ABAQUS / Explicit中开发了一个FEM模型以验证该假设。该数值模型已被用来解释传统复合材料和生物复合材料之间的差异,这些差异在主要钻井参数对钻井过程中造成的破坏的影响上。通过比较亚麻/ PLA生物复合材料上两种不同钻头几何形状的推力和破坏因子,进行了实验测试以验证模型。结果表明,只有当本构模型考虑了在这种类型的复合材料中观察到的实验行为时,才能预测进料速率引起的诱导损伤的降低。另外,该数值模型证明了能够再现在实验测试期间观察到的不同切削条件(切削速度,进给,厚度和钻头几何形状)对钻削过程中引起的损伤的影响的能力。结果表明,只有当本构模型考虑了在这种类型的复合材料中观察到的实验行为时,才能预测进料速率引起的诱导损伤的降低。另外,该数值模型证明了能够再现在实验测试期间观察到的不同切削条件(切削速度,进给,厚度和钻头几何形状)对钻削过程中引起的损伤的影响的能力。结果表明,只有当本构模型考虑了在这种类型的复合材料中观察到的实验行为时,才能预测进料速率引起的诱导损伤的降低。另外,该数值模型证明了能够再现在实验测试期间观察到的不同切削条件(切削速度,进给,厚度和钻头几何形状)对钻削过程中引起的损伤的影响的能力。

更新日期:2020-10-02
down
wechat
bug