当前位置: X-MOL 学术Opt. Laser Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-frequency flashing of light source for synchronous measurement of temperature and deformation at elevated temperature
Optics and Lasers in Engineering ( IF 3.5 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.optlaseng.2020.106361
Yunlong Tang , Jinsong Zhang , Mengkun Yue , Xiangyu Zhu , Xufei Fang , Xue Feng

Abstract Synchronous measurement of full-field temperature and deformation at elevated temperature using non-contact optical methods attracts increasing attention in evaluating the high temperature properties of materials. The current optical methods all face one major challenge, which is the strong light reflection on the surface of the specimen. Such strong light reflection could greatly impair the measurement accuracy of the temperature field measured based on the radiation light information. Here, we develop an effective and simple testing system to overcome this difficulty. The measurement system consists of an image and temperature acquisition device, and a light source with the feature of high-frequency flashing and periodic flicking. High-frequency flashing of the light source is driven by a motor and controlled by a field programmable gate array controller. Our system can realize the synchronous control of light flashing, image capturing, and temperature acquisition. Images with light on are used to calculate the deformation field based on the digital image correlation method, and those with light off (without reflection) are used for the calculation of temperature. Based on the continuous change of temperature over time, the temperature field at the moment when light is on can be obtained by interpolating the temperature fields before and after the moment through the fitted curve. Experimental validation on the thermal heating of C/C fiber composites shows a satisfactory result for temperature and deformation measurement.

中文翻译:

光源高频闪光同步测量高温变形

摘要 使用非接触光学方法同步测量全场温度和高温变形在评估材料的高温性能方面引起了越来越多的关注。当前的光学方法都面临着一个重大挑战,即样品表面的强光反射。这种强烈的光反射会极大地损害基于辐射光信息测量的温度场的测量精度。在这里,我们开发了一个有效且简单的测试系统来克服这个困难。测量系统由图像和温度采集装置和具有高频闪烁和周期性闪烁特性的光源组成。光源的高频闪光由电机驱动,由现场可编程门阵列控制器控制。我们的系统可以实现闪光、图像捕捉、温度采集的同步控制。开灯图像用于基于数字图像相关法计算变形场,关灯(无反射)图像用于计算温度。基于温度随时间的连续变化,通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。我们的系统可以实现闪光、图像捕捉、温度采集的同步控制。开灯图像用于基于数字图像相关法计算变形场,关灯(无反射)图像用于计算温度。基于温度随时间的连续变化,通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。我们的系统可以实现闪光、图像捕捉、温度采集的同步控制。开灯图像用于基于数字图像相关法计算变形场,关灯(无反射)图像用于计算温度。基于温度随时间的连续变化,通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。开灯图像用于基于数字图像相关法计算变形场,关灯(无反射)图像用于计算温度。基于温度随时间的连续变化,通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。开灯图像用于基于数字图像相关法计算变形场,关灯(无反射)图像用于计算温度。基于温度随时间的连续变化,通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。通过拟合曲线对时刻前后的温度场进行插值,可以得到点亮时刻的温度场。C/C 纤维复合材料的热加热实验验证表明,温度和变形测量结果令人满意。
更新日期:2021-02-01
down
wechat
bug