当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vehicle sideslip angle estimation by fusing inertial measurement unit and global navigation satellite system with heading alignment
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ymssp.2020.107290
Xin Xia , Lu Xiong , Yishi Lu , Letian Gao , Zhuoping Yu

Abstract Estimation of the sideslip angle is significant for vehicle safety control systems such as electronic stability control. This paper proposes a vehicle-kinematic-model-based sideslip angle estimation method by fusing the information from an inertial measurement unit (IMU) and global navigation satellite system (GNSS) with aligning the heading from the GNSS. To estimate the velocity and attitude errors of the reduced inertial navigation system (R-INS), we first formulate the associated system error dynamics. Then, to further improve the heading estimation accuracy of the R-INS, the heading from the GNSS is aligned to the vehicle longitudinal direction by a robust regression method and adopted to estimate the heading error of the R-INS. Next, an adaptive Kalman filter is applied to estimate the errors in the R-INS to attenuate the noise influence. With the velocity in navigation coordinates and the attitude between the navigation coordinates and vehicle body coordinates from the R-INS, the velocity and sideslip angle in the vehicle body coordinates are computed. Finally, tests in straight line, double lane change (DLC), and slalom maneuvers are performed to verify the sideslip angle estimation and the heading alignment method. After aligning the heading from the GNSS, the sideslip angle estimation accuracy is improved, and the mean error under typical DLC and slalom maneuvers are below 0.21°.

中文翻译:

惯性测量单元与全球导航卫星系统融合航向对准估计车辆侧滑角

摘要 侧滑角的估计对于电子稳定控制等车辆安全控制系统具有重要意义。本文提出了一种基于车辆运动学模型的侧滑角估计方法,该方法将惯性测量单元 (IMU) 和全球导航卫星系统 (GNSS) 的信息与来自 GNSS 的航向对齐。为了估计简化惯性导航系统 (R-INS) 的速度和姿态误差,我们首先制定相关的系统误差动力学。然后,为了进一步提高 R-INS 的航向估计精度,通过鲁棒回归方法将来自 GNSS 的航向与车辆纵向对齐,并用于估计 R-INS 的航向误差。下一个,自适应卡尔曼滤波器用于估计 R-INS 中的误差以衰减噪声影响。利用导航坐标系中的速度以及来自 R-INS 的导航坐标系与车身坐标系之间的姿态,计算车身坐标系中的速度和侧滑角。最后,进行了直线、双车道变换 (DLC) 和激流回旋机动测试,以验证侧滑角估计和航向对齐方法。与GNSS的航向对齐后,侧滑角估计精度得到提高,典型DLC和激流回旋机动下的平均误差低于0.21°。计算车身坐标中的速度和侧滑角。最后,通过直线、双车道变换 (DLC) 和激流回旋机动测试来验证侧滑角估计和航向对齐方法。与GNSS的航向对齐后,侧滑角估计精度得到提高,典型DLC和激流回旋机动下的平均误差低于0.21°。计算车身坐标中的速度和侧滑角。最后,进行了直线、双车道变换 (DLC) 和激流回旋机动测试,以验证侧滑角估计和航向对齐方法。与GNSS的航向对齐后,侧滑角估计精度得到提高,典型DLC和激流回旋机动下的平均误差低于0.21°。
更新日期:2021-03-01
down
wechat
bug