当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling the Key Material Properties of Germanium for Device Simulation in Cryogenic Environments
IEEE Transactions on Electron Devices ( IF 2.9 ) Pub Date : 2020-10-01 , DOI: 10.1109/ted.2020.3018097
Luke J. Bradley , Alton B. Horsfall , Angela Dyson

Germanium is commonly suggested as an alternative for power electronic devices in emerging liquid hydrogen applications. Despite the clear benefits of a twofold conductivity increase and fabrication familiarity within the community, very few models exist, which describe the temperature-dependent electrical characteristics of the material. Here, models are presented and adapted, which describe the temperature and doping dependence of the carrier concentration, mobility, and velocity from room temperature down to 20 K. For each of these, closed-loop models are adapted, which can be readily used in technology computer-aided design (TCAD) software, and new models are introduced when required. For high-field applications, the carrier velocity has been independently considered for both the $\langle {100}\rangle$ and $\langle {111}\rangle$ directions with the introduction of a new model for electrons in the $\langle {100}\rangle$ direction. With the work conducted here, it is now possible to simulate and predict the performance and suitability of germanium electronics for emerging low- and high-power applications.

中文翻译:

为低温环境中的设备仿真模拟锗的关键材料特性

在新兴的液氢应用中,通常建议将锗用作电力电子设备的替代品。尽管电导率的两倍增加和社区内的制造熟悉度具有明显的好处,但很少存在描述材料随温度变化的电气特性的模型。在这里,提出并调整了模型,这些模型描述了从室温到 20 K 的载流子浓度、迁移率和速度的温度和掺杂依赖性。对于这些模型中的每一个,都调整了闭环模型,这些模型可以很容易地用于技术计算机辅助设计 (TCAD) 软件,并在需要时引入新模型。对于高场应用,载流子速度已被独立考虑 $\lange {100}\rangle$ $\lange {111}\rangle$ 引入新的电子模型后的方向 $\lange {100}\rangle$ 方向。通过这里进行的工作,现在可以模拟和预测锗电子器件在新兴低功率和高功率应用中的性能和适用性。
更新日期:2020-10-01
down
wechat
bug