当前位置: X-MOL 学术J. Vib. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vibration suppression for large-scale flexible structures based on cable-driven parallel robots
Journal of Vibration and Control ( IF 2.3 ) Pub Date : 2020-09-25 , DOI: 10.1177/1077546320961948
Haining Sun 1 , Xiaoqiang Tang 1 , Senhao Hou 1 , Xiaoyu Wang 2
Affiliation  

Specific satellites with ultralong wings play a crucial role in many fields. However, external disturbance and self-rotation could result in undesired vibrations of the flexible wings, which affect the normal operation of the satellites. In severe cases, the satellites would be damaged. Therefore, it is imperative to conduct vibration suppression for these flexible structures. Utilizing fuzzy-proportional integral derivative control and deep reinforcement learning (DRL), two active control methods are proposed in this article to rapidly suppress the vibration of flexible structures with quite small controllable force based on a cable-driven parallel robot. Inspired by the output law of DRL, a new control method named Tang and Sun control is innovatively presented based on the Lyapunov theory. To verify the effectiveness of these three control methods, three groups of simulations with different initial disturbances are implemented for each method. Besides, to enhance the contrast, a passive pretightening scheme is also tested. First, the dynamic model of the cable-driven parallel robot which comprises four cables and a flexible structure is established using the finite element method. Then, the dynamic behavior of the model under the controllable cable force is analyzed by the Newmark-ß method. Finally, these control methods are implemented by numerical simulations to evaluate their performance, and the results are satisfactory, which validates the controllers’ ability to suppress vibrations.



中文翻译:

基于电缆驱动的并行机器人的大型柔性结构的振动抑制

具有超长机翼的特殊卫星在许多领域都起着至关重要的作用。但是,外部干扰和自转可能导致柔性机翼产生不希望的振动,从而影响卫星的正常运行。在严重的情况下,卫星将被损坏。因此,必须对这些挠性结构进行振动抑制。本文利用模糊比例积分微分控制和深度强化学习(DRL),提出了两种主动控制方法,以基于电缆驱动的并行机器人,以很小的可控力快速抑制柔性结构的振动。在DRL输出定律的启发下,基于李雅普诺夫理论创新地提出了一种新的控制方法,称为Tang和Sun控制。为了验证这三种控制方法的有效性,针对每种方法实施了三组具有不同初始扰动的仿真。此外,为了增强对比度,还测试了被动预紧方案。首先,使用有限元方法建立了包括四根电缆和柔性结构的电缆并联机器人的动力学模型。然后,通过Newmark-ß方法分析了在可控缆索力作用下模型的动力学行为。最后,这些控制方法通过数值模拟实现,以评估其性能,结果令人满意,这证明了控制器抑制振动的能力。还测试了被动预紧方案。首先,使用有限元方法建立了包括四根电缆和柔性结构的电缆并联机器人的动力学模型。然后,通过Newmark-ß方法分析了在可控缆索力作用下模型的动力学行为。最后,这些控制方法通过数值模拟实现,以评估其性能,结果令人满意,这证明了控制器抑制振动的能力。还测试了被动预紧方案。首先,使用有限元方法建立了包括四根电缆和柔性结构的电缆并联机器人的动力学模型。然后,通过Newmark-ß方法分析了在可控缆索力作用下模型的动力学行为。最后,这些控制方法通过数值模拟实现,以评估其性能,结果令人满意,这证明了控制器抑制振动的能力。

更新日期:2020-09-25
down
wechat
bug