当前位置: X-MOL 学术Opt. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Minimization of the Rayleigh-Doppler error of differential absorption lidar by frequency tuning: a simulation study
Optics Express ( IF 3.2 ) Pub Date : 2020-09-25 , DOI: 10.1364/oe.396568
Florian Späth , Andreas Behrendt , Volker Wulfmeyer

We present simulations suggesting that it is possible to minimize the systematic errors of differential absorption lidar (DIAL) measurements caused by the Rayleigh-Doppler effect by selecting an online frequency close to one of the inflection points on either side of the absorption line. Thus, it seems advantageous to select an absorption line of suitable cross section at these points on the line slopes rather than at the peak. First, we extend the classical simulation study of Ansmann (1985) for another water vapor absorption line but again with the online frequency at the line peak. As expected, we also found large systematic errors of more than 40% at the edges of aerosol layers and clouds. Second, we simulate the systematic errors for other online frequencies away from the peak for the same input profile. The results demonstrate that the errors vanish close to the inflection points. Since both the shape of the absorption lines and the width of the broadened backscatter signal depend on the atmospheric conditions, these optimum frequencies vary slightly with height and climatology. Third, we calculate the errors for a typical aerosol profile of the planetary boundary layer obtained from lidar measurements. With this case, we discuss how to select practically the online frequency so that the errors are minimized for all heights of interest. We found that the error reduces from 20 to < 1% at the top of the planetary boundary layer while, at the same time, the error reduces from 6 to 2% in 5 km.

中文翻译:

通过频率调谐使差分吸收激光雷达的瑞利-多普勒误差最小化:仿真研究

我们提出的模拟结果表明,通过选择接近吸收线两侧拐点之一的在线频率,可以最小化由瑞利多普勒效应引起的差分吸收激光雷达(DIAL)测量的系统误差。因此,在线斜率上的这些点而不是在峰值处选择合适横截面的吸收线似乎是有利的。首先,我们将Ansmann(1985)的经典模拟研究扩展到另一条水蒸气吸收谱线,但再次以谱线峰值处的在线频率进行扩展。不出所料,我们还在气溶胶层和云的边缘发现了超过40%的较大系统误差。其次,我们针对相同输入配置文件的峰值以外的其他在线频率模拟系统误差。结果表明,误差在拐点附近消失。由于吸收线的形状和加宽的反向散射信号的宽度均取决于大气条件,因此这些最佳频率会随高度和气候而略有变化。第三,我们计算从激光雷达测量获得的典型行星边界层气溶胶剖面的误差。在这种情况下,我们讨论了如何实际选择在线频率,以使所有关注高度的误差最小。我们发现,在行星边界层的顶部,误差从20%降至<1%,而在5 km内,误差从6%降至2%。由于吸收线的形状和加宽的反向散射信号的宽度均取决于大气条件,因此这些最佳频率会随高度和气候而略有变化。第三,我们计算从激光雷达测量获得的典型行星边界层气溶胶剖面的误差。在这种情况下,我们讨论了如何实际选择在线频率,以使所有关注高度的误差最小。我们发现,在行星边界层的顶部,误差从20%降至<1%,而在5 km内,误差从6%降至2%。由于吸收线的形状和加宽的反向散射信号的宽度均取决于大气条件,因此这些最佳频率会随高度和气候而略有变化。第三,我们计算从激光雷达测量获得的典型行星边界层气溶胶剖面的误差。在这种情况下,我们讨论了如何实际选择在线频率,以使所有关注高度的误差最小。我们发现,在行星边界层的顶部,误差从20%降至<1%,而在5 km内,误差从6%降至2%。我们讨论了如何实际选择在线频率,以使所有关注高度的误差最小。我们发现,在行星边界层的顶部,误差从20%降至<1%,而在5 km内,误差从6%降至2%。我们讨论了如何实际选择在线频率,以使所有关注高度的误差最小。我们发现,在行星边界层的顶部,误差从20%降至<1%,而在5 km内,误差从6%降至2%。
更新日期:2020-09-28
down
wechat
bug