当前位置: X-MOL 学术Front. Comput. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties
Frontiers in Computational Neuroscience ( IF 2.1 ) Pub Date : 2020-09-25 , DOI: 10.3389/fncom.2020.561180
Simeng Zhang , Michele Tagliati , Nader Pouratian , Binith Cheeran , Erika Ross , Erlick Pereira

Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different functional networks within traditionally targeted brain areas. Modeling the shape and size of the VTA for various monopolar or bipolar configurations can inform clinical programming strategies for GPi DBS. However, many computational models of VTA are limited by assuming tissue homogeneity. Methods: We generated a multimodal image-based detailed anatomical (MIDA) computational model with a directional DBS lead (1.5 mm or 0.5 mm vertical electrode spacing) placed with segmented contact 2 at the ventral posterolateral “sensorimotor” region of the GPi. The effect of tissue heterogeneity was examined by replacing the MIDA tissues with a homogeneous tissue of conductance 0.3 S/m. DBS pulses (amplitude: 1 mA, pulse width: 60 μs, frequency: 130 Hz) were used to produce VTAs. The following DBS contact configurations were tested: single-segment monopole (2B-/Case+), two-segment monopole (2A-/2B-/Case+ and 2B-/3B-/Case+), ring monopole (2A-/2B-/2C-/Case+), one-cathode three-anode bipole (2B-/3A+/3B+/3C+), three-cathode three-anode bipole (2A-/2B-/2C-/3A+/3B+/3C+). Additionally, certain vertical configurations were repeated with 2 mA current amplitude. Results: Using a heterogeneous tissue model affected both the size and shape of the VTA in GPi. Electrodes with both 0.5 mm and 1.5 mm vertical spacing (1 mA) modeling showed that the single segment monopolar VTA was entirely contained within the GPi when the active electrode is placed at the posterolateral “sensorimotor” GPi. Two segments in a same ring and ring settings, however, produced VTAs outside of the GPi border that spread into adjacent white matter pathways, e.g., optic tract and internal capsule. Both stacked monopolar settings and vertical bipolar settings allowed activation of structures dorsal to the GPi in addition to the GPi. Modeling of the stacked monopolar settings with the DBS lead with 0.5 mm vertical electrode spacing further restricted VTAs within the GPi, but the VTA volumes were smaller compared to the equivalent settings of 1.5 mm spacing.

中文翻译:

在苍白球内部用定向深部脑刺激引线控制激活的组织体积:具有异质组织特性的建模研究

目的:研究定向深部脑刺激 (DBS) 电极配置和垂直电极间距对苍白球内部组织 (GPi) 激活组织体积 (VTA) 的影响。背景:定向 DBS 导联可能允许临床医生将电流场精确地引导到传统靶向大脑区域内的不同功能网络。为各种单极或双极配置的 VTA 形状和大小建模可以为 GPi DBS 的临床编程策略提供信息。然而,许多 VTA 计算模型受限于假设组织同质性。方法:我们生成了一个基于多模态图像的详细解剖 (MIDA) 计算模型,带有定向 DBS 导联(1.5 毫米或 0. 5 毫米垂直电极间距)与分段触点 2 一起放置在 GPi 的腹侧后外侧“感觉运动”区域。通过用电导为 0.3 S/m 的均质组织替换 MIDA 组织来检查组织异质性的影响。DBS 脉冲(幅度:1 mA,脉冲宽度:60 μs,频率:130 Hz)用于产生 VTA。测试了以下 DBS 触点配置:单段单极杆 (2B-/Case+)、两段单极杆 (2A-/2B-/Case+ 和 2B-/3B-/Case+)、环形单极杆 (2A-/2B-/ 2C-/Case+)、一阴极三阳极双极(2B-/3A+/3B+/3C+)、三阴极三阳极双极(2A-/2B-/2C-/3A+/3B+/3C+)。此外,某些垂直配置以 2 mA 电流幅度重复。结果:使用异质组织模型影响 GPi 中 VTA 的大小和形状。电极同时具有 0. 5 毫米和 1.5 毫米垂直间距 (1 mA) 模型表明,当有源电极放置在后外侧“感觉运动”GPi 处时,单段单极 VTA 完全包含在 GPi 内。然而,同一环和环设置中的两个节段在 GPi 边界外产生 VTA,这些 VTA 扩散到相邻的白质通路,例如,视束和内囊。除了 GPi 之外,堆叠单极设置和垂直双极设置都允许激活 GPi 背侧的结构。使用 0.5 mm 垂直电极间距的 DBS 引线对堆叠单极设置进行建模进一步限制了 GPi 内的 VTA,但与 1.5 mm 间距的等效设置相比,VTA 体积更小。5 mm 垂直间距 (1 mA) 模型表明,当有源电极放置在后外侧“感觉运动”GPi 处时,单段单极 VTA 完全包含在 GPi 内。然而,同一环和环设置中的两个节段在 GPi 边界外产生 VTA,这些 VTA 扩散到相邻的白质通路,例如,视束和内囊。除了 GPi 之外,堆叠单极设置和垂直双极设置都允许激活 GPi 背侧的结构。使用 0.5 mm 垂直电极间距的 DBS 引线对堆叠单极设置进行建模进一步限制了 GPi 内的 VTA,但与 1.5 mm 间距的等效设置相比,VTA 体积更小。5 毫米垂直间距 (1 mA) 模型表明,当有源电极放置在后外侧“感觉运动”GPi 处时,单段单极 VTA 完全包含在 GPi 内。然而,同一环和环设置中的两个节段在 GPi 边界外产生 VTA,这些 VTA 扩散到相邻的白质通路,例如,视束和内囊。除了 GPi 之外,堆叠单极设置和垂直双极设置都允许激活 GPi 背侧的结构。使用 0.5 mm 垂直电极间距的 DBS 引线对堆叠单极设置进行建模进一步限制了 GPi 内的 VTA,但与 1.5 mm 间距的等效设置相比,VTA 体积更小。然而,同一环和环设置中的两个节段在 GPi 边界外产生 VTA,这些 VTA 扩散到相邻的白质通路,例如,视束和内囊。除了 GPi 之外,堆叠单极设置和垂直双极设置都允许激活 GPi 背侧的结构。使用 0.5 mm 垂直电极间距的 DBS 引线对堆叠单极设置进行建模进一步限制了 GPi 内的 VTA,但与 1.5 mm 间距的等效设置相比,VTA 体积更小。然而,同一环和环设置中的两个节段在 GPi 边界外产生 VTA,这些 VTA 扩散到相邻的白质通路,例如,视束和内囊。除了 GPi 之外,堆叠单极设置和垂直双极设置都允许激活 GPi 背侧的结构。使用 0.5 mm 垂直电极间距的 DBS 引线对堆叠单极设置进行建模进一步限制了 GPi 内的 VTA,但与 1.5 mm 间距的等效设置相比,VTA 体积更小。
更新日期:2020-09-25
down
wechat
bug