当前位置: X-MOL 学术Russ. Microelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charge Transport Mechanism in a Formless Memristor Based on Silicon Nitride
Russian Microelectronics Pub Date : 2020-09-24 , DOI: 10.1134/s1063739720050078
O. M. Orlov , A. A. Gismatulin , V. A. Gritsenko , D. S. Mizginov

Abstract

Silicon oxide and silicon nitride are two key dielectrics in silicon devices. The advantage of silicon nitride over other dielectrics is that silicon nitride is compatible with silicon technology. Despite numerous studies, the mechanism of charge transfer in the storage elements of resistive memory based on silicon nitride is still not clear. It is required to study in detail the mechanism of charge transfer in a memristor based on silicon nitride in order to further improve the cell information storage element and create a matrix of these elements. Metal–nitride–oxide–silicon (MNOS) structures that exhibit memristor properties are obtained using chemical vapor deposition at low pressure at 700°C. The fabricated structure of the resistive memory storage element based on metal–nitride–oxide–silicon does not require a molding procedure. In addition, such a memristor has a memory window of about five orders of magnitude. We establish that the main mechanism of charge transfer in the MNOS memristor in the high-resistance state is the current model with a limited spatial charge of the traps. In a low resistance state, the charge transfer mechanism is described by the current model with a limited spatial charge with filled traps. The trap’s parameters are determined in a memristor based on silicon nitride in a high-resistance state.



中文翻译:

基于氮化硅的无形忆阻器中的电荷传输机制

摘要

氧化硅和氮化硅是硅器件中的两个关键电介质。氮化硅优于其他电介质的优点是氮化硅与硅技术兼容。尽管进行了大量研究,但基于氮化硅的电阻式存储器的存储元件中电荷转移的机制仍不清楚。需要进一步研究基于氮化硅的忆阻器中的电荷转移机制,以便进一步改善单元信息存储元素并创建这些元素的矩阵。具有忆阻器特性的金属-氮化物-氧化物-硅(MNOS)结构是通过在700°C的低压下进行化学气相沉积获得的。基于金属-氮化物-氧化物-硅的电阻式存储器存储元件的装配结构不需要模制步骤。此外,这样的忆阻器具有大约五个数量级的存储器窗口。我们建立了在高阻态的MNOS忆阻器中电荷转移的主要机制是当前模型,其陷阱的空间电荷有限。在低电阻状态下,电流模型由电流模型描述,其中有限的空间电荷带有陷阱。陷阱的参数是在忆阻器中基于高电阻状态的氮化硅确定的。当前模型描述了电荷转移机制,其中有限的空间电荷带有陷阱。陷阱的参数是在忆阻器中基于高电阻状态的氮化硅确定的。当前模型描述了电荷转移机制,其中有限的空间电荷带有陷阱。陷阱的参数是在忆阻器中基于高电阻状态的氮化硅确定的。

更新日期:2020-09-25
down
wechat
bug