当前位置: X-MOL 学术J. Electr. Eng. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Space Charge Accumulation Mechanism Near the Stress Cone of Cable Accessories Under Electrical-Thermal Aging
Journal of Electrical Engineering & Technology ( IF 1.6 ) Pub Date : 2020-09-25 , DOI: 10.1007/s42835-020-00543-1
Dongxin He , Wenjie Gong , Tao Zhang , Wei Wang , Xiaoran Wang , Qingquan Li

Due to the complicated structure composed of different kinds of materials, space charges tend to accumulate within cable accessories, which easily leads to the electrical breakdown. To obtain insights into the space charge accumulation in cable accessories, accelerated aging was performed for 10 kV crosslinked polyethylene (XLPE) insulated cable samples with stress cones, under an AC voltage of 26.1 kV and temperatures of 103 °C and 114 °C. The space charge distribution in the cable insulation was tested at different aging stages. The results show that space charge accumulates in the insulation covered by the stress cones, and the charge density and coaxial distribution region increase during aging. Together with the results for the charge measurement on peeled cable samples, it is concluded that charge accumulation is related to the semiconductor used in the stress cones. It is difficult for the space charge generated in the cable insulation to escape through the silicone rubber-based (SR-based) semiconductor in the stress cones, as the ability of this material to conduct charges is lower than that of a cable-shielding ethylene–vinyl acetate-based (EVA-based) semiconductor; therefore, the space charge accumulates near the outer part of the insulation. This research provides insights into the important function of semiconductor on charge accumulation in cable accessories, which will aid in research on optimizing and prolonging the lifetime of cable accessories.

中文翻译:

电热老化下电缆附件应力锥附近的空间电荷积累机制

由于由不同种类的材料组成的复杂结构,空间电荷容易在电缆附件内积聚,容易导致电击穿。为了深入了解电缆附件中的空间电荷积累,在 26.1 kV 的交流电压和 103 °C 和 114 °C 的温度下,对具有应力锥的 10 kV 交联聚乙烯 (XLPE) 绝缘电缆样品进行了加速老化。在不同老化阶段测试了电缆绝缘层中的空间电荷分布。结果表明,空间电荷在应力锥覆盖的绝缘层中积累,电荷密度和同轴分布区域在老化过程中增加。连同剥离电缆样品的电荷测量结果,结论是电荷积累与应力锥中使用的半导体有关。电缆绝缘层中产生的空间电荷很难通过应力锥中的硅橡胶基(SR基)半导体逸出,因为这种材料的导电能力低于电缆屏蔽乙烯– 醋酸乙烯基(EVA 基)半导体;因此,空间电荷在绝缘体的外部附近积聚。该研究提供了对半导体在电缆附件中电荷积累的重要作用的见解,这将有助于优化和延长电缆附件寿命的研究。电缆绝缘层中产生的空间电荷很难通过应力锥中的硅橡胶基(SR基)半导体逸出,因为这种材料的导电能力低于电缆屏蔽乙烯的能力– 醋酸乙烯基(EVA 基)半导体;因此,空间电荷在绝缘体的外部附近积聚。该研究提供了对半导体在电缆附件中电荷积累的重要作用的见解,这将有助于优化和延长电缆附件寿命的研究。电缆绝缘层中产生的空间电荷很难通过应力锥中的硅橡胶基(SR基)半导体逸出,因为这种材料的导电能力低于电缆屏蔽乙烯– 醋酸乙烯基(EVA 基)半导体;因此,空间电荷在绝缘体的外部附近积聚。该研究提供了对半导体在电缆附件中电荷积累的重要作用的见解,这将有助于优化和延长电缆附件寿命的研究。
更新日期:2020-09-25
down
wechat
bug