当前位置: X-MOL 学术Eur. J. Forest Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatial variability of forest floor and topsoil thicknesses and their relation to topography and forest stand characteristics in managed forests of Norway spruce and European beech
European Journal of Forest Research ( IF 2.6 ) Pub Date : 2020-09-25 , DOI: 10.1007/s10342-020-01316-1
Kateřina Zajícová , Tomáš Chuman

Soils play a significant role in climate regulation, especially due to soil organic carbon (SOC). The SOC pool is therefore modeled for various environments, and forest floor and topsoil thicknesses are important parameters for most of these models as they store most of the SOC. However, the forest floor and topsoil thicknesses show high spatial variability which is a result of multiple factors which are not agreed upon among scientists. Out of these factors, we choose topography parameters (elevation, slope, and topography wetness index) and forest stand characteristics (stand age, dominant tree species, and forest floor cover), and soil moisture, and we analyzed their relationship to the forest floor and topsoil thicknesses. The study was performed in a managed submontaneous forest in Central Europe dominated by Picea abies (L.) Karsten with small patches of Fagus sylvatica L. or other species. The thicknesses of the O horizons (Oi, Oe, Oa) and topsoil were measured at 221 sampling pits. Geographically weighted regression showed that the spatial variability of the overall forest floor plus topsoil thickness (OA) is responsible for 8% of its variability. The thickness of the OA is the most strongly controlled by forest floor cover explaining approximately 6% of its variability and soil moisture explaining 2–6% of the variability. The Oi + Oe horizon thickness is controlled only by forest floor cover explaining 10.7% of its variability, and the thickness of Oa + A horizon can be explained mainly by soil moisture in mineral horizon explaining 9% of the variability.

中文翻译:

挪威云杉和欧洲山毛榉管理林中森林地面和表土厚度的空间变异性及其与地形和林分特征的关系

土壤在气候调节中发挥着重要作用,尤其是由于土壤有机碳 (SOC)。因此,针对各种环境对 SOC 池进行建模,并且森林地面和表层土壤厚度是大多数这些模型的重要参数,因为它们存储了大部分 SOC。然而,森林地面和表土厚度显示出高度的空间变异性,这是科学家之间未达成一致的多种因素的结果。在这些因素中,我们选择了地形参数(高程、坡度和地形湿度指数)和林分特征(林龄、优势树种和森林覆盖率)和土壤水分,并分析了它们与森林地面的关系和表土厚度。该研究是在中欧一个受管理的山下森林中进行的,该森林以冷杉云杉(L. ) Karsten 带有小片 Fagus sylvatica L. 或其他物种。在 221 个采样坑测量了 O 层(Oi、Oe、Oa)和表土的厚度。地理加权回归表明,整个森林地面的空间变异性加上表土厚度 (OA) 占其变异性的 8%。OA 的厚度最受森林地面覆盖控制,解释了大约 6% 的变异性,土壤湿度解释了 2-6% 的变异性。Oi + Oe 层的厚度仅受森林地面覆盖的控制,解释了其 10.7% 的变异性,而 Oa + A 层的厚度主要可以由矿物层中的土壤水分来解释,解释了 9% 的变异性。Oa) 和表土是在 221 个采样坑测量的。地理加权回归表明,整个森林地面的空间变异性加上表土厚度 (OA) 占其变异性的 8%。OA 的厚度最受森林地面覆盖控制,解释了大约 6% 的变异性,土壤湿度解释了 2-6% 的变异性。Oi + Oe 层的厚度仅受森林地面覆盖的控制,解释了其 10.7% 的变异性,而 Oa + A 层的厚度主要可以由矿物层中的土壤水分来解释,解释了 9% 的变异性。Oa) 和表土是在 221 个采样坑测量的。地理加权回归表明,整个森林地面的空间变异性加上表土厚度 (OA) 占其变异性的 8%。OA 的厚度最受森林地面覆盖控制,解释了大约 6% 的变异性,土壤湿度解释了 2-6% 的变异性。Oi + Oe 层的厚度仅受森林地面覆盖的控制,解释了其 10.7% 的变异性,而 Oa + A 层的厚度主要可以由矿物层中的土壤水分来解释,解释了 9% 的变异性。OA 的厚度最受森林地面覆盖控制,解释了大约 6% 的变异性,土壤湿度解释了 2-6% 的变异性。Oi + Oe 层的厚度仅受森林地面覆盖的控制,解释了其 10.7% 的变异性,而 Oa + A 层的厚度主要可以由矿物层中的土壤水分来解释,解释了 9% 的变异性。OA 的厚度最受森林地面覆盖控制,解释了大约 6% 的变异性,土壤湿度解释了 2-6% 的变异性。Oi + Oe 层的厚度仅受森林地面覆盖的控制,解释了其 10.7% 的变异性,而 Oa + A 层的厚度主要可以由矿物层中的土壤水分来解释,解释了 9% 的变异性。
更新日期:2020-09-25
down
wechat
bug